Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: CityTFT: Temporal Fusion Transformer for Urban Building Energy Modeling
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-004-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-004-alpha.b-cdn.net
      • sl-yoda-v2-stream-004-beta.b-cdn.net
      • 1685195716.rsc.cdn77.org
      • 1239898752.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            CityTFT: Temporal Fusion Transformer for Urban Building Energy Modeling
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            CityTFT: Temporal Fusion Transformer for Urban Building Energy Modeling

            Dez 15, 2023

            Sprecher:innen

            TD

            Ting-Yu Dai

            Sprecher:in · 0 Follower:innen

            DN

            Dev Niyogi

            Sprecher:in · 0 Follower:innen

            ZN

            Zoltan Nagy

            Sprecher:in · 0 Follower:innen

            Über

            Urban Building Energy Modeling (UBEM) is an emerging method to investigate urban design and energy systems against the increasing energy demand at urban and neighborhood levels. However, current UBEM methods are mostly physic-based and time-consuming in multiple climate change scenarios. This work proposes CityTFT, a data-driven UBEM framework, to accurately model the energy demands in urban environments. With the empowerment of the underlying TFT framework and an augmented loss function, CityTF…

            Organisator

            N2
            N2

            NeurIPS 2023

            Konto · 645 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Transformed Low-Rank Parameterization Can Help Robust Generalization for Tensor Neural Networks
            05:02

            Transformed Low-Rank Parameterization Can Help Robust Generalization for Tensor Neural Networks

            Andong Wang, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Sketching Algorithms for Sparse Dictionary Learning: PTAS and Turnstile Streaming
            04:52

            Sketching Algorithms for Sparse Dictionary Learning: PTAS and Turnstile Streaming

            Gregory Dexter, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Adaptive Data Analysis in a Balanced Adversarial Model
            05:02

            Adaptive Data Analysis in a Balanced Adversarial Model

            Eliad Tsfadia, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Deep Non-line-of-sight Imaging from Under-scanning Measurements
            05:19

            Deep Non-line-of-sight Imaging from Under-scanning Measurements

            Yue Li, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Energy Guided Diffusion for Generating Neurally Exciting Images
            04:44

            Energy Guided Diffusion for Generating Neurally Exciting Images

            Pawel Pierzchlewicz, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Granger Components Analysis: Unsupervised learning of latent temporal dependencies
            04:24

            Granger Components Analysis: Unsupervised learning of latent temporal dependencies

            Jacek Dmochowski

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2023 folgen