Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Addressing Long-Horizon Tasks by Integrating Program Synthesis and State Machines
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-007-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-007-alpha.b-cdn.net
      • sl-yoda-v3-stream-007-beta.b-cdn.net
      • 1211500432.rsc.cdn77.org
      • 1991924839.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Addressing Long-Horizon Tasks by Integrating Program Synthesis and State Machines
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Addressing Long-Horizon Tasks by Integrating Program Synthesis and State Machines

            Dez 15, 2023

            Sprecher:innen

            YL

            Yu-An; Lin

            Sprecher:in · 0 Follower:innen

            CL

            Chen-Tao Lee

            Sprecher:in · 0 Follower:innen

            GL

            Guanting Liu

            Sprecher:in · 0 Follower:innen

            Über

            Deep reinforcement learning excels in various domains but lacks generalizability and interoperability. Programmatic RL (Trivedi et al., 2021; Liu et al., 2023) methods reformulate solving RL tasks as synthesizing interpretable programs that can be executed in the environments. Despite encouraging results, these methods are limited to short-horizon tasks. On the other hand, representing RL policies using state machines (Inala et al., 2020) can inductively generalize to long-horizon tasks; however…

            Organisator

            N2
            N2

            NeurIPS 2023

            Konto · 645 Follower:innen

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Residual Alignment: Uncovering the Mechanisms of Residual Networks
            04:58

            Residual Alignment: Uncovering the Mechanisms of Residual Networks

            Jianing Li, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Accessing higher dimensions for unsupervised word translation
            04:52

            Accessing higher dimensions for unsupervised word translation

            Sida Wang

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            HomeRobot Open Vocabulary Mobile Manipulation Challenge
            08:27

            HomeRobot Open Vocabulary Mobile Manipulation Challenge

            Volodymyr Kuzma, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Diverse Conventions for Human-AI Collaboration
            04:56

            Diverse Conventions for Human-AI Collaboration

            Bidipta Sarkar, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Traveling NeuReps in Brains and Machines
            30:56

            Traveling NeuReps in Brains and Machines

            Max Welling, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            ClimSim: A large multi-scale dataset for hybrid physics-ML climate emulation
            14:20

            ClimSim: A large multi-scale dataset for hybrid physics-ML climate emulation

            Sungduk Yu, …

            N2
            N2
            NeurIPS 2023 16 months ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2023 folgen