Control of free boundary problems with surface tension effect

Sep 24, 2014

Speakers

About

Harbir Antil, George Mason University, United States We will consider a PDE constrained optimization problem governed by a free boundary problem. The state system is based on coupling the Laplace equation in the bulk with a Young-Laplace equation on the free boundary to account for surface tension, as proposed by P. Saavedra and L. R. Scott. This amounts to solving a second order system both in the bulk and on the interface. Our analysis hinges on a convex constraint on the control such that the state constraints are always satisfied. Using only first order regularity we show that the control to state operator is twice Fréchet differentiable. We improve slightly the regularity of the state variables and exploit this to show existence of a control together with second order sufficient optimality conditions. We prove that the state and adjoint system have the requisite regularity for the error analysis (strong solutions). We discretize the state, adjoint and control variables via piecewise linear finite elements and show optimal O(h) error estimates for all variables, including the control. Finally, we give a novel analysis for a more practical model with Stokes equations in the bulk and slip boundary conditions on the free boundary.

Organizer

About MORE

MOdelling REvisited + MOdel REduction Modeling, analysis and computing in nonlinear PDEs. September 21-26, 2014, Chateau Liblice, Czech Republic. Recently developed implicit constitutive theory allows one to describe nonlinear response of complex materials in complicated processes and to model phenomena in both fluid and solid mechanics that have hitherto remained unexplained. The theory also provides a thermodynamically consistent framework for technologically important but so far only ad hoc engineering models without sound footing. The overall goal of the project is to develop accurate, efficient and robust numerical methods that allow one to perform large-scale simulations for the models arising from the new theoretical framework. A natural part of the goal is rigorous mathematical analysis of the models. The nonstandard structure of constitutive relations arising from the new framework requires the reconsideration of many existing approaches in the mathematical theory of partial differential equations and the development of new ones. In particular, basic notions such as the concept of the solution and its well-posedness need to be reconsidered. Further, the complexity of the constitutive relations calls for rigorous investigation on model reduction - the identification of simplified models that capture the chosen (practically relevant) information about the behaviour of the system and disregard irrelevant information. Reliable numerical simulations require the derivation of sharp a posteriori error estimates to control all possible sources of errors, including rarely studied but important algebraic errors. We believe that in solving difficult problems in mathematical modelling the individual aspects discussed above - physics, mathematical analysis and numerical analysis - are so closely interrelated that no breakthrough can be achieved without emphasising the holistic approach as the main principle. Our vision is to follow this principle: the entire process of modelling of complex materials will be revisited in an innovative manner.

Store presentation

Should this presentation be stored for 1000 years?

How do we store presentations

Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

Sharing

Recommended Videos

Presentations on similar topic, category or speaker