Power of experimental design and active learning

by · Jun 14, 2019 · 90 views ·

Classical supervised machine learning algorithms focus on the setting where the algorithm has access to a fixed labeled dataset obtained prior to any analysis. In most applications, however, we have control over the data collection process such as which image labels to obtain, which drug-gene interactions to record, which network routes to probe, which movies to rate, etc. Furthermore, most applications face budget limitations on the amount of labels that can be collected. Experimental design and active learning are two paradigms that involve careful selection of data points to label from a large unlabeled pool. This talk will discuss and contrast the power of experimental design and active learning, starting with some recent advances in these paradigms and then posing open questions involving their integration and application to deep models.