General ML

Jun 11, 2019



Subspace Robust Wasserstein Distances Making sense of Wasserstein distances between discrete measures in high-dimensional settings remains a challenge. Recent work has advocated a two-step approach to improve robustness and facilitate the computation of optimal transport, using for instance projections on random real lines, or a preliminary quantization of the measures to reduce the size of their support. We propose in this work a "max-min" robust variant of the Wasserstein distance by considering the maximal possible distance that can be realized between two measures, assuming they can be projected orthogonally on a lower k-dimensional subspace. Alternatively, we show that the corresponding "min-max" OT problem has a tight convex relaxation which can be cast as that of finding an optimal transport plan with a low transportation cost, where the cost is alternatively defined as the sum of the k largest eigenvalues of the second order moment matrix of the displacements (or matchings) corresponding to that plan (the usual OT definition only considers the trace of that matrix). We show that both quantities inherit several favorable properties from the OT geometry. We propose two algorithms to compute the latter formulation using entropic regularization, and illustrate the interest of this approach empirically. Decomposing feature-level variation with Covariate Gaussian Process Latent Variable Models The interpretation of complex high-dimensional data typically requires the use of dimensionality reduction techniques to extract explanatory low-dimensional representations. However, these representations may not be sufficient or appropriate to aid interpretation particularly where dimensionality reduction is achieved through highly non-linear transformations. For example, in transcriptomics, the expression of many thousands of genes can be simultaneously measured and low-dimensional representations developed for visualisation and understanding groupings of coordinated gene behaviour. Nonetheless, the underlying biology is ultimately physically driven by variation at the level of individual genes and we would like to decompose that expression variability into a number of meaningful sub-components using a nonlinear alternative to traditional mixed model regression analysis. Gaussian Process Latent Variable Models (GPLVMs) offer a principled way of performing probabilistic non-linear dimensionality reduction and can be extended to incorporate additional covariate information that is available in real-life applications. For example, in transcriptomics, covariate information might include categorical labels (e.g. denoting known disease sub-populations), continuous-valued measurements (e.g. biomarkers), or censored information (e.g. patient survival times). However, the objective of such extensions in previous works has often been to boost predictive or classification power of the GPLVM. For example, the supervised GPLVM, uses class information to effectively build a distinct GPLVM for each class of data. Our motivation is discovery-led and we wish to understand the nature of the feature-level variability, separating the covariate effects from the contribution of latent variables, e.g. to identify sets of features which are fully explained by covariates. We principally do this in a high-dimensional observations setting where the number of features is vastly greater than the number of known covariates. In this paper, we propose the Covariate Gaussian Process Latent Variable Model (c-GPLVM) to achieve this through a structured sparsity-inducing kernel decomposition for the GPLVM which allows us to explicitly disentangle variation in the observed data vectors induced by variation in the covariate inputs or latent variables and interaction effects where the covariate inputs act in concert with the latent variables. The novelty of our approach is that the structured kernel permits both the development of a nonlinear mapping into a latent space where confounding factors are already adjusted for and feature-level variation that can be deconstructed. We demonstrate the utility of this model on a number of simulated examples and applications in disease progression modelling from high-dimensional gene expression data in the presence of additional phenotypes. In each setting we show that the c-GPLVM is able to effectively extract low-dimensional structures from high-dimensional data sets whilst allowing a breakdown of feature-level variability that is not present in other commonly used dimensionality reduction approaches. Active Manifolds: A non-linear analogue to Active Subspaces We present an approach to analyze C1(Rm) functions that addresses limitations present in the Active Subspaces (AS) method of Constantine et al. (2014; 2015). Under appropriate hypotheses, our Active Manifolds (AM) method identifies a 1-D curve in the domain (the active manifold) on which nearly all values of the unknown function are attained, which can be exploited for approximation or analysis, especially when m is large (high-dimensional input space). We provide theorems justifying our AM technique and an algorithm permitting functional approximation and sensitivity analysis. Using accessible, low-dimensional functions as initial examples, we show AM reduces approximation error by an order of magnitude compared to AS, at the expense of more computation. Following this, we revisit the sensitivity analysis by Glaws et al. (2017), who apply AS to analyze a magnetohydrodynamic power generator model, and compare the performance of AM on the same data. Our analysis provides detailed information not captured by AS, exhibiting the influence of each parameter individually along an active manifold. Overall, AM represents a novel technique for analyzing functional models with benefits including: reducing m-dimensional analysis to a 1-D analogue, permitting more accurate regression than AS (at more computational expense), enabling more informative sensitivity analysis, and granting accessible visualizations (2-D plots) of parameter sensitivity along the AM. Optimal Minimal Margin Maximization with Boosting Boosting algorithms iteratively produce linear combinations of more and more base hypotheses and it has been observed experimentally that the generalization error keeps improving even after achieving zero training error. One popular explanation attributes this to improvements in margins. A common goal in a long line of research, is to obtain large margins using as few base hypotheses as possible, culminating with the AdaBoostV algorithm by Rätsch and Warmuth [JMLR’05]. The AdaBoostV algorithm was later conjectured to yield an optimal trade-off between number of hypotheses trained and the minimal margin over all training points (Nie, Warmuth, Vishwanathan and Zhang [JMLR’13]). Our main contribution is a new algorithm refuting this conjecture. Furthermore, we prove a lower bound which implies that our new algorithm is optimal. Generalized Linear Rule Models This paper considers generalized linear models using rule-based features, also referred to as rule ensembles, for regression and probabilistic classification. Rules facilitate model interpretation while also capturing nonlinear dependences and interactions. Our problem formulation accordingly trades off rule set complexity and prediction accuracy. Column generation is used to optimize over an exponentially large space of rules without pre-generating a large subset of candidates or greedily boosting rules one by one. The column generation subproblem is solved using either integer programming or a heuristic optimizing the same objective. In experiments involving logistic and linear regression, the proposed methods obtain better accuracy-complexity trade-offs than existing rule ensemble algorithms. At one end of the trade-off, the methods are competitive with less interpretable benchmark models. Fast Incremental von Neumann Graph Entropy Computation: Theory, Algorithm, and Applications The von Neumann graph entropy (VNGE) facilitates the measure of information divergence and distance between graphs in a graph sequence and has successfully been applied to various learning tasks driven by network-based data. Albeit its effectiveness, it is computationally demanding by requiring the full eigenspectrum of the graph Laplacian matrix. In this paper, we propose a fast incremental von Neumann graph entropy (FINGER) framework, which approaches VNGE with a performance guarantee. FINGER reduces the cubic complexity of VNGE to linear complexity in the number of nodes and edges, and thus enables online computation based on incremental graph changes. We also show asymptotic equivalency of FINGER to the exact VNGE, and derive its approximation error bounds. Based on FINGER, we propose efficient algorithms for computing Jensen-Shannon distance between graphs. Our experimental results on different random graph models demonstrate the computational efficiency and the asymptotic equivalency of FINGER. In addition, we also apply FINGER to two real-world applications and one synthesized anomaly detection dataset, and corroborate its superior performance over seven baseline graph similarity methods. Variational Inference for sparse network reconstruction from count data Networks provide a natural yet statistically grounded way to depict and understand how a set of entities interact. However, in many situations interactions are not directly observed and the network needs to be reconstructed based on observations collected for each entity. Our work focuses on the situation where these observations consist of counts. A typical example is the reconstruction of an ecological network based on abundance data. In this setting, the abundance of a set of species is collected in a series of samples and/or environments and we aim at inferring direct interactions between the species. The abundances at hand can be, for example, direct counts of individuals (ecology of macro-organisms) or read counts resulting from metagenomic sequencing (microbial ecology). Whatever the approach chosen to infer such a network, it has to account for the peculiaraties of the data at hand. The first, obvious one, is that the data are counts, i.e. non continuous. Also, the observed counts often vary over many orders of magnitude and are more dispersed than expected under a simple model, such as the Poisson distribution. The observed counts may also result from different sampling efforts in each sample and/or for each entity, which hampers direct comparison. Furthermore, because the network is supposed to reveal only direct interactions, it is highly desirable to account for covariates describing the environment to avoid spurious edges. Many methods of network reconstruction from count data have been proposed. In the context of microbial ecology, most methods (SparCC, REBACCA, SPIEC-EASI, gCODA, BanOCC) rely on a two-step strategy: transform the counts to pseudo Gaussian observations using simple transforms before moving back to the setting of Gaussian Graphical Models, for which state of the art methods exist to infer the network, but only in a Gaussian world. In this work, we consider instead a full-fledged probabilistic model with a latent layer where the counts follow Poisson distributions, conditional to latent (hidden) Gaussian correlated variables. In this model, known as Poisson log-normal (PLN), the dependency structure is completely captured by the latent layer and we model counts, rather than transformations thereof. To our knowledge, the PLN framework is quite new and has only been used by two other recent methods (Mint and plnDAG) to reconstruct networks from count data. In this work, we use the same mathematical framework but adopt a different optimization strategy which alleviates the whole optimization process. We also fully exploit the connection between the PLN framework and generalized linear models to account for the peculiarities of microbiological data sets. The network inference step is done as usual by adding sparsity inducing constraints on the inverse covariance matrix of the latent Gaussian vector to select only the most important interactions between species. Unlike the usual Gaussian setting, the penalized likelihood is generally not tractable in this framework. We resort instead to a variational approximation for parameter inference and solve the corresponding optimization problem by alternating a gradient descent on the variational parameters and a graphical-Lasso step on the covariance matrix. We also select the sparsity parameter using the resampling-based StARS procedure. We show that the sparse PLN approach has better performance than existing methods on simulated datasets and that it extracts relevant signal from microbial ecology datasets. We also show that the inference scales to datasets made up of hundred of species and samples, in line with other methods in the field. In short, our contributions to the field are the following: we extend the use of PLN distributions in network inference by (i) accounting for covariates and offset and thus removing some spurious edges induced by confounding factors, (ii) accounting for different sampling effort to integrate data sets from different sources and thus infer interactions between different types of organisms (e.g. bacteria - fungi), (iii) developing an inference procedure based on the iterative optimization of a well defined objective function. Our objective function is a provable lower bound of the observed likelihood and our procedure accounts for the uncertainty associated with the estimation of the latent variable, unlike the algorithm presented in Mint and plnDAG. Simplifying Graph Convolutional Networks Graph Convolutional Networks (GCNs) and their variants have experienced significant attention and have become the de facto methods for learning graph representations. GCNs derive inspiration primarily from recent deep learning approaches, and as a result, may inherit unnecessary complexity and redundant computation. In this paper, we reduce this excess complexity through successively removing nonlinearities and collapsing weight matrices between consecutive layers. We theoretically analyze the resulting linear model and show that it corresponds to a fixed low-pass filter followed by a linear classifier. Notably, our experimental evaluation demonstrates that these simplifications do not negatively impact accuracy in many down-stream applications. Moreover, the resulting model scales to larger datasets, is naturally interpretable, and yields up to two orders of magnitude speedup over FastGCN. Robust Influence Maximization for Hyperparametric Models In this paper we study the problem of robust influence maximization in the independent cascade model under a hyperparametric assumption. In social networks users influence and are influenced by individuals with similar characteristics and as such they are associated with some features. A recent surging research direction in influence maximization focuses on the case where the edge probabilities on the graph are not arbitrary but are generated as a function of the features of the users and a global hyperparameter. We propose a model where the objective is to maximize the worst-case number of influenced users for any possible value of that hyperparameter. We provide theoretical results showing that proper robust solution in our model is NP-hard and an algorithm that achieves improper robust optimization. We make-use of sampling based techniques and of the renowned multiplicative weight updates algorithm. Additionally we validate our method empirically and prove that it outperforms the state-of-the-art robust influence maximization techniques. HyperGAN: A Generative Model for Diverse, Performant Neural Networks We introduce HyperGAN, a generative model that learns to generate all the parameters of a deep neural network. HyperGAN first transforms low dimensional noise into a latent space, which can be sampled from to obtain diverse, performant sets of parameters for a target architecture. We utilize an architecture that bears resemblance to generative adversarial networks, but we evaluate the likelihood of generated samples with a classification loss. This is equivalent to minimizing the KL-divergence between the distribution of generated parameters, and the unknown true parameter distribution. We apply HyperGAN to classification, showing that HyperGAN can learn to generate parameters which solve the MNIST and CIFAR-10 datasets with competitive performance to fully supervised learning, while also generating a rich distribution of effective parameters. We also show that HyperGAN can also provide better uncertainty estimates than standard ensembles. This is evidenced by the ability of HyperGAN-generated ensembles to detect out of distribution data as well as adversarial examples.



About ICML 2019

The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

Store presentation

Should this presentation be stored for 1000 years?

How do we store presentations

Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%


Recommended Videos

Presentations on similar topic, category or speaker