Jun 11, 2019
Rethinking Lossy Compression: The Rate-Distortion-Perception Tradeoff Lossy compression algorithms are typically designed and analyzed through the lens of Shannon's rate-distortion theory, where the goal is to achieve the lowest possible distortion (e.g., low MSE or high SSIM) at any given bit rate. However, in recent years, it has become increasingly accepted that "low distortion" is not a synonym for "high perceptual quality", and in fact optimization of one often comes at the expense of the other. In light of this understanding, it is natural to seek for a generalization of rate-distortion theory which takes perceptual quality into account. In this paper, we adopt the mathematical definition of perceptual quality recently proposed by Blau & Michaeli (2018), and use it to study the three-way tradeoff between rate, distortion, and perception. We show that restricting the perceptual quality to be high, generally leads to an elevation of the rate-distortion curve, thus necessitating a sacrifice in either rate or distortion. We prove several fundamental properties of this triple-tradeoff, calculate it in closed form for a Bernoulli source, and illustrate it visually on a toy MNIST example. Collaborative Channel Pruning for Deep Networks Deep networks have achieved impressive performance in various domains, but their applications are largely limited by the prohibitive computational overhead. In this paper, we propose a novel algorithm, namely collaborative channel pruning (CCP), to reduce the computational overhead with negligible performance degradation. The joint impact of pruned/preserved channels on the loss function is quantitatively analyzed, and such inter-channel dependency is exploited to determine which channels to be pruned. The channel selection problem is then reformulated as a constrained 0-1 quadratic optimization problem, and the Hessian matrix, which is essential in constructing the above optimization, can be efficiently approximated. Empirical evaluation on two benchmark data sets indicates that our proposed CCP algorithm achieves higher classification accuracy with similar computational complexity than other state-of-the-art channel pruning algorithms. Same, Same But Different: Recovering Neural Network Quantization Error Through Weight Factorization Quantization of neural networks has become common practice, driven by the need for efficient implementations of deep neural networks on embedded devices. In this paper, we exploit an oft-overlooked degree of freedom in most networks - for a given layer, individual output channels can be scaled by any factor provided that the corresponding weights of the next layer are inversely scaled. Therefore, a given network has many factorizations which change the weights of the network without changing its function. We present a conceptually simple and easy to implement method that uses this property and show that proper factorizations significantly decrease the degradation caused by quantization. We show improvement on a wide variety of networks and achieve state-of-the-art degradation results for MobileNets. While our focus is on quantization, this type of factorization is applicable to other domains such as network-pruning, neural nets regularization and network interpretability. GDPP: Learning Diverse Generations using Determinantal Point Processes Generative models have proven to be an outstanding tool for representing high-dimensional probability distributions and generating realistic looking images. An essential characteristic of generative models is their ability to produce multi-modal outputs. However, while training, they are often susceptible to mode collapse, that is models are limited in mapping the input noise to only a few modes of the true data distribution. In this paper, we draw inspiration from Determinantal Point Process (DPP) to propose an unsupervised penalty loss that alleviates mode collapse while producing higher quality samples. DPP is an elegant probabilistic measure used to model negative correlations within a subset and hence quantify its diversity. We use DPP kernel to model the diversity in real data as well as in synthetic data. Then, we devise an objective term that encourages the generator to synthesize data with a similar diversity to real data. In contrast to previous state-of-the-art generative models that tend to use additional trainable parameters or complex training paradigms, our method does not change the original training scheme. Embedded in an adversarial training and variational autoencoder, our Generative DPP approach shows a consistent resistance to mode-collapse on a wide-variety of synthetic data and natural image datasets including MNIST, CIFAR10, and CelebA, while outperforming state-of-the-art methods for data-efficiency, convergence-time, and generation quality whereas being 5.8x faster than its closest competitor. Our code, attached to the submission, will be made publicly available. Co-Representation Network for Generalized Zero-Shot Learning Generalized zero-shot learning is a significant topic but faced with bias problem, which leads to unseen classes being easily misclassified into seen classes. Hence we propose a embedding model called co-representation network to learn a more uniform visual embedding space that effectively alleviates the bias problem and helps with classification. We mathematically analyze our model and find it learns a projection with high local linearity, which is proved to cause less bias problem. The network consists of a cooperation module for representation and a relation module for classification, it is simple in structure and can be easily trained in an end-to-end manner. Experiments show that our method outperforms existing generalized zero-shot learning methods on several benchmark datasets. GEOMetrics: Exploiting Geometric Structure for Graph-Encoded Objects Mesh models are a promising approach for encoding the structure of 3D objects. Current mesh reconstruction systems predict uniformly distributed vertex locations of a predetermined graph through a series of graph convolutions, leading to compromises with respect to performance or resolution. In this paper, we argue that the graph representation of geometric objects allows for additional structure, which should be leveraged for enhanced reconstruction. Thus, we propose a system which properly benefits from the advantages of the geometric structure of graph-encoded objects by introducing (1) a graph convolutional update preserving vertex information; (2) an adaptive splitting heuristic allowing detail to emerge; and (3) a training objective operating both on the local surfaces defined by vertices as well as the global structure defined by the mesh. Our proposed method is evaluated on the task of 3D object reconstruction from images with the ShapeNet dataset, where we demonstrate state of the art performance, both visually and numerically, while having far smaller space requirements by generating adaptive meshes. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks Convolutional Neural Networks (ConvNets) are commonly developed at a fixed computational cost, and then scaled up for better accuracy if more resources are given. Conventional practice is to arbitrarily make ConvNets deeper or wider, or use larger image resolution, but is there a more principled method to scale up a ConvNet? In this paper, we systematically study this problem and identify that carefully balancing network depth, width, and resolution can lead to better accuracy and efficiency. Based on this observation, we propose a new scaling method that uniformly scales all dimensions of network depth/width/resolution using a simple yet highly effective compound coefficient. Results show our method improves the performance on scaling up prior MobileNets. To further demonstrate the effectiveness of our scaling method, we also develop a new mobile-size EMNAS-B0 baseline, and scale it up to achieve state-of-the-art 84.4% top-1 / 97.1% top-5 accuracy on ImageNet, but being 8.4x smaller and 6x faster on inference than the best existing ConvNet (Huang et al., 2018). Our scaled EMNAS models also achieve new state-of-the-art accuracy on five commonly used transfer learning datasets, such as CIFAR-100 (91.7%) and Flowers (98.8%), with an order of magnitude fewer parameters. Geometry Aware Convolutional Filters for Omnidirectional Images Representation Due to their wide field of view, omnidirectional cameras are frequently used by autonomous vehicles, drones and robots for navigation and other computer vision tasks. The images captured by such cameras, are often analyzed and classified with techniques designed for planar images that unfortunately fail to properly handle the native geometry of such images and therefore results in suboptimal performance. In this paper we aim at improving popular deep convolutional neural networks so that they can properly take into account the specific properties of omnidirectional data. In particular we propose an algorithm that adapts convolutional layers, which often serve as a core building block of a CNN, to the properties of omnidirectional images. Thus, our filters have a shape and size that adapt to the location on the omnidirectional image. We show that our method is not limited to spherical surfaces and is able to incorporate the knowledge about any kind of projective geometry inside the deep learning network. As depicted by our experiments, our method outperforms the existing deep neural network techniques for omnidirectional image classification and compression tasks. A Personalized Affective Memory Model for Improving Emotion Recognition Recent models of emotion recognition strongly rely on supervised deep learning solutions for the distinction of general emotion expressions. However, they are not reliable when recognizing online and personalized facial expressions, e.g., for person-specific affective understanding. In this paper, we present a neural model based on a conditional adversarial autoencoder to learn how to represent and edit general emotion expressions. We then propose Grow-When-Required networks as personalized affective memories to learn individualized aspects of emotion expressions. Our model achieves state-of-the-art performance on emotion recognition when evaluated on \textit{in-the-wild} datasets. Furthermore, our experiments include ablation studies and neural visualizations in order to explain the behavior of our model. Temporal Gaussian Mixture Layer for Videos We introduce a new convolutional layer named the Temporal Gaussian Mixture (TGM) layer and present how it can be used to efficiently capture longer-term temporal information in continuous activity videos. The TGM layer is a temporal convolutional layer governed by a much smaller set of parameters (e.g., location/variance of Gaussians) that are fully differentiable. We present our fully convolutional video models with multiple TGM layers for activity detection. The extensive experiments on multiple datasets, including Charades and MultiTHUMOS, confirm the effectiveness of TGM layers, significantly outperforming the state-of-the-arts.
The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.
Professional recording and live streaming, delivered globally.
Presentations on similar topic, category or speaker