Další
Efficient Processing of Deep Neural Network: from Algorithms to Hardware Architectures
Živý přenos začne již brzy!
Živý přenos již skončil.
Prezentace ještě nebyla nahrána!
  • title: Imitation Learning and its Application to Natural Language Generation
      0:00 / 0:00
      • Nahlásit chybu
      • Nastavení
      • Playlisty
      • Záložky
      • Titulky Off
      • Rychlost přehrávání
      • Kvalita
      • Nastavení
      • Debug informace
      • Server sl-yoda-v2-stream-009-alpha.b-cdn.net
      • Velikost titulků Střední
      • Záložky
      • Server
      • sl-yoda-v2-stream-009-alpha.b-cdn.net
      • sl-yoda-v2-stream-009-beta.b-cdn.net
      • 1766500541.rsc.cdn77.org
      • 1441886916.rsc.cdn77.org
      • Titulky
      • Off
      • 21.srt
      • Rychlost přehrávání
      • Kvalita
      • Velikost titulků
      • Velké
      • Střední
      • Malé
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      Moje playlisty
        Záložky
          00:00:00
            Imitation Learning and its Application to Natural Language Generation
            • Nastavení
            • Sync diff
            • Kvalita
            • Nastavení
            • Server
            • Kvalita
            • Server

            Imitation Learning and its Application to Natural Language Generation

            9. prosince 2019

            Řečníci

            HDI

            Hal Daumé III

            Sprecher:in · 6 Follower:innen

            KC

            Kyunghyun Cho

            Sprecher:in · 19 Follower:innen

            O prezentaci

            Imitation learning is a learning paradigm that interpolates reinforcement learning on one extreme and supervised learning on the other extreme. In the specific case of generating structured outputs--as in natural language generation--imitation learning allows us to train generation policies with neither strong supervision on the detailed generation procedure (as would be required in supervised learning) nor with only a sparse reward signal (as in reinforcement learning). Imitation learning accom…

            Organizátor

            N2
            N2

            NIPS 2019

            Konto · 963 Follower:innen

            Kategorie

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            O organizátorovi (NIPS 2019)

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Baví vás formát? Nechte SlidesLive zachytit svou akci!

            Profesionální natáčení a streamování po celém světě.

            Sdílení

            Doporučená videa

            Prezentace na podobné téma, kategorii nebo přednášejícího

            Algorithmic Injustices: Towards a Relational Ethics
            17:57

            Algorithmic Injustices: Towards a Relational Ethics

            Abeba Birhane

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Contributed talk 7 – Selection Bias Invalidates Fairness
            08:58

            Contributed talk 7 – Selection Bias Invalidates Fairness

            Margarita Boyarskaya

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 1 = 0.1%

            Understanding Sparse JL for Feature Hashing
            13:56

            Understanding Sparse JL for Feature Hashing

            Meena Jagadeesan

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Contributed Talk: Towards deep amortized clustering
            14:44

            Contributed Talk: Towards deep amortized clustering

            Juho Lee

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            The model-to-data paradigm: overcoming data access barriers in biomedical competitions
            16:21

            The model-to-data paradigm: overcoming data access barriers in biomedical competitions

            Justin Guinney

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Emotion recognition using Texture Maps and Convolutional Neural Networks
            07:44

            Emotion recognition using Texture Maps and Convolutional Neural Networks

            Lourdes Ramírez Cerna

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 1 = 0.1%

            Zajímají Vás podobná videa? Sledujte NIPS 2019