Guided Similarity Separation for Image Retrieval

Dec 11, 2019



Despite recent progress in computer vision, image retrieval remains a challenging open problem. Numerous variations such as view angle, lighting and occlusion make it difficult to design models that are both robust and efficient. Many leading methods traverse the nearest neighbor graph to exploit higher order neighbor information and uncover the highly complex underlying manifold. In this work we propose a different approach where we leverage graph convolutional networks to directly encode neighbor information into image descriptors. We further leverage ideas from clustering and manifold learning, and introduce an unsupervised loss based on pairwise separation of image similarities. Empirically, we demonstrate that our model is able to successfully learn a new descriptor space that significantly improves retrieval accuracy, while still allowing efficient inner product inference. Experiments on five public benchmarks show highly competitive performance with up to 24\% relative improvement in mAP over leading baselines. Full code for this work is available here:



About NIPS 2019

Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

Store presentation

Should this presentation be stored for 1000 years?

How do we store presentations

Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%


Recommended Videos

Presentations on similar topic, category or speaker

Interested in talks like this? Follow NIPS 2019