Graph Networks for Learning Physics

Dec 13, 2019



I'll describe a series of studies that use graph networks to reason about and interact with complex physical systems. These models can be used to predict the motion of bodies in particle systems, infer hidden physical properties, control simulated robotic systems, build physical structures, and interpret the symbolic form of the underlying laws that govern physical systems. More generally, this work underlines graph neural networks' role as a first-class member of the deep learning toolkit.



About NIPS 2019

Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

Store presentation

Should this presentation be stored for 1000 years?

How do we store presentations

Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%


Recommended Videos

Presentations on similar topic, category or speaker

Interested in talks like this? Follow NIPS 2019