Adversarial Neural Pruning with Latent Vulnerability Suppression

Jul 12, 2020

Speakers

About

Despite the remarkable performance of deep neural networks on various computer vision tasks, they are known to be highly susceptible to adversarial perturbations, which makes it challenging to deploy them in real-world safety-critical applications. In this paper, we conjecture that the leading cause of this adversarial vulnerability is the distortion in the latent feature space, and provide methods to suppress them effectively. Explicitly, we define vulnerability for each latent feature and then propose a new loss for adversarial learning, Vulnerability Suppression (VS) loss, that aims to minimize the feature-level vulnerability during training. We further propose a Bayesian framework to prune features with high vulnerability to reduce both vulnerability and loss on adversarial samples. We validate our Adversarial Neural Pruning (ANP) method on multiple benchmark datasets, on which it not only obtains state-of-the-art adversarial robustness but also improves the performance on clean examples, using only a fraction of the parameters used by the full network. Further qualitative analysis suggests that the improvements come from the suppression of feature-level vulnerability.

Organizer

Categories

About ICML 2020

The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

Store presentation

Should this presentation be stored for 1000 years?

How do we store presentations

Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

Sharing

Recommended Videos

Presentations on similar topic, category or speaker

Interested in talks like this? Follow ICML 2020