Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Adversarial Neural Pruning with Latent Vulnerability Suppression
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-013-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-013-alpha.b-cdn.net
      • sl-yoda-v3-stream-013-beta.b-cdn.net
      • 1668715672.rsc.cdn77.org
      • 1420896597.rsc.cdn77.org
      • Subtitles
      • Off
      • en
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Adversarial Neural Pruning with Latent Vulnerability Suppression
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Adversarial Neural Pruning with Latent Vulnerability Suppression

            Jul 12, 2020

            Speakers

            DM

            Divyam Madaan

            Řečník · 0 sledujících

            JS

            Jinwoo Shin

            Řečník · 2 sledující

            SJH

            Sung Ju Hwang

            Řečník · 0 sledujících

            About

            Despite the remarkable performance of deep neural networks on various computer vision tasks, they are known to be highly susceptible to adversarial perturbations, which makes it challenging to deploy them in real-world safety-critical applications. In this paper, we conjecture that the leading cause of this adversarial vulnerability is the distortion in the latent feature space, and provide methods to suppress them effectively. Explicitly, we define vulnerability for each latent feature and then…

            Organizer

            I2
            I2

            ICML 2020

            Účet · 2,7k sledujících

            Categories

            Umělá inteligence a data science

            Kategorie · 10,8k prezentací

            About ICML 2020

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Like the format? Trust SlidesLive to capture your next event!

            Professional recording and live streaming, delivered globally.

            Sharing

            Recommended Videos

            Presentations on similar topic, category or speaker

            Representation learning on sequential data with latent priors
            50:43

            Representation learning on sequential data with latent priors

            Jan Chorowski

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Revisiting Fundamentals of Experience Replay
            13:35

            Revisiting Fundamentals of Experience Replay

            William Fedus, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Neural Bipartite Matching
            05:12

            Neural Bipartite Matching

            Dobrik Georgiev, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Characterizing Distribution Equivalence and Structure Learning for Cyclic and Acyclic Directed Graphs
            14:32

            Characterizing Distribution Equivalence and Structure Learning for Cyclic and Acyclic Directed Graphs

            AmirEmad Ghassami, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Universal Average-Case Optimality of Polyak Momentum
            13:20

            Universal Average-Case Optimality of Polyak Momentum

            Damien Scieur, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Consistency Regularization for Variational Autoencoders
            04:30

            Consistency Regularization for Variational Autoencoders

            Samarth Sinha, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interested in talks like this? Follow ICML 2020