Další
Živý přenos začne již brzy!
Živý přenos již skončil.
Prezentace ještě nebyla nahrána!
  • title: LTF: A Label Transformation Framework for Correcting Target Shift
      0:00 / 0:00
      • Nahlásit chybu
      • Nastavení
      • Playlisty
      • Záložky
      • Titulky Off
      • Rychlost přehrávání
      • Kvalita
      • Nastavení
      • Debug informace
      • Server sl-yoda-v3-stream-016-alpha.b-cdn.net
      • Velikost titulků Střední
      • Záložky
      • Server
      • sl-yoda-v3-stream-016-alpha.b-cdn.net
      • sl-yoda-v3-stream-016-beta.b-cdn.net
      • 1504562137.rsc.cdn77.org
      • 1896834465.rsc.cdn77.org
      • Titulky
      • Off
      • en
      • Rychlost přehrávání
      • Kvalita
      • Velikost titulků
      • Velké
      • Střední
      • Malé
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      Moje playlisty
        Záložky
          00:00:00
            LTF: A Label Transformation Framework for Correcting Target Shift
            • Nastavení
            • Sync diff
            • Kvalita
            • Nastavení
            • Server
            • Kvalita
            • Server

            LTF: A Label Transformation Framework for Correcting Target Shift

            12. července 2020

            Řečníci

            JG

            Jiaxian Guo

            Sprecher:in · 0 Follower:innen

            MG

            Mingming Gong

            Sprecher:in · 0 Follower:innen

            TL

            Tongliang Liu

            Sprecher:in · 0 Follower:innen

            O prezentaci

            Distribution shift is a major obstacle to the deployment of current deep learning models on real-world problems. Let Y be the class label and X the features. We focus on one type of distribution shift, label shift, where the label marginal distribution P_Y changes but the conditional distribution P_X|Y does not. Most existing methods estimate the density ratio between the source- and target-domain label distributions by density matching. However, these methods are either computationally infeasib…

            Organizátor

            I2
            I2

            ICML 2020

            Konto · 2,7k Follower:innen

            Kategorie

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            O organizátorovi (ICML 2020)

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Baví vás formát? Nechte SlidesLive zachytit svou akci!

            Profesionální natáčení a streamování po celém světě.

            Sdílení

            Doporučená videa

            Prezentace na podobné téma, kategorii nebo přednášejícího

            Language Agnostic Speech Embeddings for Emotion Classification
            09:16

            Language Agnostic Speech Embeddings for Emotion Classification

            Jithendra Vepa, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Learning Adversarial Markov Decision Processes with Bandit Feedback and Unknown Transition
            15:14

            Learning Adversarial Markov Decision Processes with Bandit Feedback and Unknown Transition

            Chi Jin, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Rapid policy updating in human physical construction
            05:18

            Rapid policy updating in human physical construction

            Will McCarthy, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Logarithmic Regret for Online Control
            14:47

            Logarithmic Regret for Online Control

            Dylan J. Foster, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Sample Complexity Bounds for 1-bit Compressive Sensing and Binary Stable Embeddings with Generative Priors
            13:21

            Sample Complexity Bounds for 1-bit Compressive Sensing and Binary Stable Embeddings with Generative Priors

            Zhaoqiang Liu, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Poster #55

            Luna Zhang

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Zajímají Vás podobná videa? Sledujte ICML 2020