Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Spectral Graph Matching and Regularized Quadratic Relaxations
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-012-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-012-alpha.b-cdn.net
      • sl-yoda-v3-stream-012-beta.b-cdn.net
      • 1338956956.rsc.cdn77.org
      • 1656830687.rsc.cdn77.org
      • Subtitles
      • Off
      • en
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Spectral Graph Matching and Regularized Quadratic Relaxations
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Spectral Graph Matching and Regularized Quadratic Relaxations

            Jul 12, 2020

            Speakers

            ZF

            Zhou Fan

            Řečník · 0 sledujících

            CM

            Cheng Mao

            Řečník · 0 sledujících

            YW

            Yihong Wu

            Řečník · 0 sledujících

            About

            Graph matching, also known as network alignment, aims at recovering the latent vertex correspondence between two unlabeled, edge-correlated weighted graphs. To tackle this task, we propose a spectral method, GRAph Matching by Pairwise eigen-Alignments (GRAMPA), which first constructs a similarity matrix as a weighted sum of outer products between all pairs of eigenvectors of the two graphs, and then outputs a matching by a simple rounding procedure. For a universality class of correlated Wigner…

            Organizer

            I2
            I2

            ICML 2020

            Účet · 2,7k sledujících

            Categories

            Matematika

            Kategorie · 2,4k prezentací

            Umělá inteligence a data science

            Kategorie · 10,8k prezentací

            About ICML 2020

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Like the format? Trust SlidesLive to capture your next event!

            Professional recording and live streaming, delivered globally.

            Sharing

            Recommended Videos

            Presentations on similar topic, category or speaker

            Closing remarks
            02:21

            Closing remarks

            Zelda Mariet, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Retrospective on Learning Language Representations
            25:45

            Retrospective on Learning Language Representations

            Dani Yogatama

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            OPtions as REsponses: Grounding behavioural hierarchies in multi-agent reinforcement learning
            14:17

            OPtions as REsponses: Grounding behavioural hierarchies in multi-agent reinforcement learning

            Maria Eckstein, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Peer Loss Functions: Learning from Noisy Labels without Knowing Noise Rates
            15:56

            Peer Loss Functions: Learning from Noisy Labels without Knowing Noise Rates

            Yang Liu, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Deep Isometric Learning for Visual Recognition
            15:34

            Deep Isometric Learning for Visual Recognition

            Haozhi Qi, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            A Closer Look at Accuracy vs. Robustness
            05:02

            A Closer Look at Accuracy vs. Robustness

            Yao-Yuan Yang, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interested in talks like this? Follow ICML 2020