Další
Živý přenos začne již brzy!
Živý přenos již skončil.
Prezentace ještě nebyla nahrána!
  • title: Composable Sketches for Functions of Frequencies: Beyond the Worst Case
      0:00 / 0:00
      • Nahlásit chybu
      • Nastavení
      • Playlisty
      • Záložky
      • Titulky Off
      • Rychlost přehrávání
      • Kvalita
      • Nastavení
      • Debug informace
      • Server sl-yoda-v3-stream-012-alpha.b-cdn.net
      • Velikost titulků Střední
      • Záložky
      • Server
      • sl-yoda-v3-stream-012-alpha.b-cdn.net
      • sl-yoda-v3-stream-012-beta.b-cdn.net
      • 1338956956.rsc.cdn77.org
      • 1656830687.rsc.cdn77.org
      • Titulky
      • Off
      • en
      • Rychlost přehrávání
      • Kvalita
      • Velikost titulků
      • Velké
      • Střední
      • Malé
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      Moje playlisty
        Záložky
          00:00:00
            Composable Sketches for Functions of Frequencies: Beyond the Worst Case
            • Nastavení
            • Sync diff
            • Kvalita
            • Nastavení
            • Server
            • Kvalita
            • Server

            Composable Sketches for Functions of Frequencies: Beyond the Worst Case

            12. července 2020

            Řečníci

            EC

            Edith Cohen

            Sprecher:in · 0 Follower:innen

            OG

            Ofir Geri

            Sprecher:in · 0 Follower:innen

            RP

            Rasmus Pagh

            Sprecher:in · 0 Follower:innen

            O prezentaci

            Recently there has been increased interest in using machine learning techniques to improve classical algorithms. In this paper we study when it is possible to construct compact, composable sketches for weighted sampling and statistics estimation according to functions of data frequencies. Such structures are now central components of large-scale data analytics and machine learning pipelines. Many common functions, however, such as thresholds and pth frequency moments with p>2, are known to r…

            Organizátor

            I2
            I2

            ICML 2020

            Konto · 2,7k Follower:innen

            Kategorie

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            Mathematik

            Kategorie · 2,4k Präsentationen

            O organizátorovi (ICML 2020)

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Baví vás formát? Nechte SlidesLive zachytit svou akci!

            Profesionální natáčení a streamování po celém světě.

            Sdílení

            Doporučená videa

            Prezentace na podobné téma, kategorii nebo přednášejícího

            Amortised Learning by Wake-Sleep
            10:33

            Amortised Learning by Wake-Sleep

            Kevin Wenliang, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            CLUB: A Contrastive Log-ratio Upper Bound of Mutual Information
            13:42

            CLUB: A Contrastive Log-ratio Upper Bound of Mutual Information

            Pengyu Cheng, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Population-Based Black-Box Optimization for Biological Sequence Design
            07:16

            Population-Based Black-Box Optimization for Biological Sequence Design

            Christof Angermueller

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Multi-Step Greedy Reinforcement Learning Algorithms
            12:48

            Multi-Step Greedy Reinforcement Learning Algorithms

            Manan Tomar, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            DeBayes: a Bayesian method for debiasing network embeddings
            14:26

            DeBayes: a Bayesian method for debiasing network embeddings

            Maarten Buyl, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Evolutionary Reinforcement Learning for Sample-Efficient Multiagent Cooperation
            15:53

            Evolutionary Reinforcement Learning for Sample-Efficient Multiagent Cooperation

            Somdeb Majumdar, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Zajímají Vás podobná videa? Sledujte ICML 2020