Composable Sketches for Functions of Frequencies: Beyond the Worst Case

Jul 12, 2020



Recently there has been increased interest in using machine learning techniques to improve classical algorithms. In this paper we study when it is possible to construct compact, composable sketches for weighted sampling and statistics estimation according to functions of data frequencies. Such structures are now central components of large-scale data analytics and machine learning pipelines. Many common functions, however, such as thresholds and pth frequency moments with p>2, are known to require polynomial size sketches in the worst case. We explore performance beyond the worst case under two different types of assumptions. The first is having access to noisy advice on item frequencies. This continues the line of work of Hsu et al. (ICLR 2019), who assume predictions are provided by a machine learning model. The second is providing guaranteed performance on a restricted class of input frequency distributions that are better aligned with what is observed in practice. This extends the work on heavy hitters under Zipfian distributions in a seminal paper of Charikar et al. (ESA 2002). Surprisingly, we show analytically and empirically that “in practice” small polylogarithmic-size sketches provide accuracy for “hard” functions.



About ICML 2020

The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

Store presentation

Should this presentation be stored for 1000 years?

How do we store presentations

Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%


Recommended Videos

Presentations on similar topic, category or speaker