Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Bayesian Optimisation over Multiple Continuous and Categorical Inputs
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-012-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-012-alpha.b-cdn.net
      • sl-yoda-v3-stream-012-beta.b-cdn.net
      • 1338956956.rsc.cdn77.org
      • 1656830687.rsc.cdn77.org
      • Subtitles
      • Off
      • en
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Bayesian Optimisation over Multiple Continuous and Categorical Inputs
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Bayesian Optimisation over Multiple Continuous and Categorical Inputs

            Jul 12, 2020

            Speakers

            RR

            Robin Ru

            Řečník · 1 sledující

            AA

            Ahsan Alvi

            Řečník · 0 sledujících

            VN
            VN

            Vu Nguyen

            Řečník · 3 sledující

            About

            Efficient optimisation of black-box problems that comprise both continuous and categorical inputs is important, yet poses significant challenges. Current approaches, like one-hot encoding, severely increase the dimension of the search space, while separate modelling of category-specific data is sample-inefficient. Both frameworks are not scalable to practical applications involving multiple categorical variables, each with multiple possible values. We propose a new approach, Continuous and Categ…

            Organizer

            I2
            I2

            ICML 2020

            Účet · 2,6k sledujících

            Categories

            Umělá inteligence a data science

            Kategorie · 10,8k prezentací

            About ICML 2020

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Like the format? Trust SlidesLive to capture your next event!

            Professional recording and live streaming, delivered globally.

            Sharing

            Recommended Videos

            Presentations on similar topic, category or speaker

            Discussion Panel Q&A

            Maryam Majzoubi

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Noncommutative Arithmetic-Geometric Mean Conjecture is False
            14:33

            Noncommutative Arithmetic-Geometric Mean Conjecture is False

            Zehua Lai, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Learning Graph Structure with A Finite-State Automaton Layer
            04:34

            Learning Graph Structure with A Finite-State Automaton Layer

            Daniel D Johnson, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Do We Really Need to Access the Source Data? Source Hypothesis Transfer for Unsupervised Domain Adaptation
            12:49

            Do We Really Need to Access the Source Data? Source Hypothesis Transfer for Unsupervised Domain Adaptation

            Jian Liang, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Implicit competitive regularization in GANs
            15:06

            Implicit competitive regularization in GANs

            Florian Schaefer, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Graph-based Nearest Neighbor Search: From Practice to Theory
            11:12

            Graph-based Nearest Neighbor Search: From Practice to Theory

            Liudmila Prokhorenkova, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interested in talks like this? Follow ICML 2020