Data-Dependent Differentially Private Parameter Learning for Directed Graphical Models

Jul 12, 2020

Speakers

About

Directed graphical models (DGMs) are a class of probabilistic models that are widely used for predictive analysis in sensitive domains such as medical diagnostics. In this paper, we present an algorithm for differentially-private learning of the parameters of a DGM. Our solution optimizes for the utility of inference queries over the DGM and adds noise that is customized to the properties of the private input dataset and the graph structure of the DGM. To the best of our knowledge, this is the first explicit data-dependent privacy budget allocation algorithm in the context of DGMs. We compare our algorithm with a standard data-independent approach over a diverse suite of benchmarks and demonstrate that our solution requires a privacy budget that is roughly 3× smaller to obtain the same or higher utility.

Organizer

Categories

About ICML 2020

The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

Store presentation

Should this presentation be stored for 1000 years?

How do we store presentations

Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

Sharing

Recommended Videos

Presentations on similar topic, category or speaker