Inexact Tensor Methods with Dynamic Accuracies

Jul 12, 2020

Speakers

About

In this paper, we study inexact high-order Tensor Methods for solving convex optimization problems with composite objective. At every step of such methods, we use approximate solution of the auxiliary problem, defined by the bound for the residual in function value. We propose two dynamic strategies for choosing the inner accuracy: the first one is decreasing as 1/k^p + 1, where p ≥ 1 is the order of the method and k is the iteration counter, and the second approach is using for the inner accuracy the last progress in the target objective. We show that inexact Tensor Methods with these strategies achieve the same global convergence rate as in the error-free case. For the second approach we also establish local superlinear rates (for p ≥ 2), and propose the accelerated scheme. Lastly, we present computational results on a variety of machine learning problems for several methods and different accuracy policies.

Organizer

Categories

About ICML 2020

The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

Like the format? Trust SlidesLive to capture your next event!

Professional recording and live streaming, delivered globally.

Sharing

Recommended Videos

Presentations on similar topic, category or speaker

Interested in talks like this? Follow ICML 2020