Discriminative Adversarial Search for Abstractive Summarization

Jul 12, 2020

Speakers

About

We introduce a novel approach for sequence decoding, Discriminative Adversarial Search (DAS), which has the desirable properties of alleviating the effects of exposure bias without requiring external metrics. Inspired by Generative Adversarial Networks (GANs), wherein a discriminator is used to improve the generator, our method differs from GANs in that the generator parameters are not updated at training time and the discriminator is used to drive sequence generation at inference time. We investigate the effectiveness of the proposed approach on the task of Abstractive Summarization: the results obtained show that a naive application of DAS improves over the state-of-the-art methods, with further gains obtained via discriminator retraining. Moreover, we show how DAS can be effective for cross-domain adaptation. Finally, all results reported are obtained without additional rule-based filtering strategies, commonly used by the best performing systems available: this indicates that DAS can effectively be deployed without relying on post-hoc modifications of the generated outputs.

Organizer

Categories

About ICML 2020

The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

Store presentation

Should this presentation be stored for 1000 years?

How do we store presentations

Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

Sharing

Recommended Videos

Presentations on similar topic, category or speaker