Apr 4, 2021
Sprecher:in · 0 Follower:innen
Sprecher:in · 0 Follower:innen
Sprecher:in · 0 Follower:innen
Sprecher:in · 0 Follower:innen
Sprecher:in · 0 Follower:innen
Sprecher:in · 0 Follower:innen
Sprecher:in · 0 Follower:innen
Sprecher:in · 0 Follower:innen
We introduce Larq Compute Engine, the world's fastest Binarized Neural Network (BNN) inference engine, and use this framework to investigate several important questions about the efficiency of BNNs and to design a new state-of-the-art BNN architecture. LCE provides highly optimized implementations of binary operations and accelerates binary convolutions by 8.5 - 18.5x compared to their full-precision counterparts on Pixel 1 phones. LCE's integration with Larq and a sophisticated MLIR-based converter allow users to move smoothly from training to deployment. By extending TensorFlow and TensorFlow Lite, LCE supports models which combine binary and full-precision layers, and can be easily integrated into existing applications. Using LCE, we analyze the performance of existing BNN computer vision architectures and develop QuickNet, a simple, easy-to-reproduce BNN that outperforms existing binary networks in terms of latency and accuracy on ImageNet. Furthermore, we investigate the impact of full-precision shortcuts and the relationship between number of MACs and model latency. We are convinced that empirical performance should drive BNN architecture design and hope this work will facilitate others to design, benchmark and deploy binary models.We introduce Larq Compute Engine, the world's fastest Binarized Neural Network (BNN) inference engine, and use this framework to investigate several important questions about the efficiency of BNNs and to design a new state-of-the-art BNN architecture. LCE provides highly optimized implementations of binary operations and accelerates binary convolutions by 8.5 - 18.5x compared to their full-precision counterparts on Pixel 1 phones. LCE's integration with Larq and a sophisticated MLIR-based conve…
Konto · 159 Follower:innen
Kategorie · 10,8k Präsentationen
The Conference on Machine Learning and Systems targets research at the intersection of machine learning and systems. The conference aims to elicit new connections amongst these fields, including identifying best practices and design principles for learning systems, as well as developing novel learning methods and theory tailored to practical machine learning workflows.
Professional recording and live streaming, delivered globally.
Presentations on similar topic, category or speaker
Ewigspeicher-Fortschrittswert: 0 = 0.0%
Xiaohu Tang, …
Ewigspeicher-Fortschrittswert: 0 = 0.0%
Ewigspeicher-Fortschrittswert: 0 = 0.0%
Ewigspeicher-Fortschrittswert: 0 = 0.0%
Atli Kosson, …
Ewigspeicher-Fortschrittswert: 0 = 0.0%
Ewigspeicher-Fortschrittswert: 0 = 0.0%