Noise Contrastive Meta-Learning for Conditional Density Estimation using Kernel Mean Embeddings

Apr 14, 2021

Speakers

About

Current meta-learning approaches focus on learning functional representations of relationships between variables, \textit{i.e.} estimating conditional expectations in regression. In many applications, however, the conditional distributions cannot be meaningfully summarized solely by expectation (due to \textit{e.g.} multimodality). We introduce a novel technique for meta-learning conditional densities, which combines neural representation and noise contrastive estimation together with well-established literature in conditional mean embeddings into reproducing kernel Hilbert spaces. The method shows significant improvements over standard density estimation methods on synthetic and real-world data, by leveraging shared representations across multiple conditional density estimation tasks.

Organizer

Categories

About AISTATS 2021

The 24th International Conference on Artificial Intelligence and Statistics was held virtually from Tuesday, 13 April 2021 to Thursday, 15 April 2021.

Store presentation

Should this presentation be stored for 1000 years?

How do we store presentations

Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

Sharing

Recommended Videos

Presentations on similar topic, category or speaker