Apr 14, 2021
Speaker · 1 follower
Speaker · 0 followers
Existing deterministic variational inference approaches for diffusion processes use simple proposals and target the marginal density of the posterior. We construct the variational process as a controlled version of the prior process and approximate the posterior by a set of moment functions. In combination with moment closure, the smoothing problem is reduced to a deterministic optimal control problem. Exploiting the pathwise Fisher information, we propose an optimization procedure that corresponds to a natural gradient descent in the variational parameters. Our approach allows for richer variational approximations that extend to state-dependent diffusion terms. The classical Gaussian process approximation is recovered as a special case.Existing deterministic variational inference approaches for diffusion processes use simple proposals and target the marginal density of the posterior. We construct the variational process as a controlled version of the prior process and approximate the posterior by a set of moment functions. In combination with moment closure, the smoothing problem is reduced to a deterministic optimal control problem. Exploiting the pathwise Fisher information, we propose an optimization procedure that correspo…
Account · 63 followers
Category · 2.4k presentations
The 24th International Conference on Artificial Intelligence and Statistics was held virtually from Tuesday, 13 April 2021 to Thursday, 15 April 2021.
Professional recording and live streaming, delivered globally.
Presentations on similar topic, category or speaker
Kiyeob Lee, …
Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%
Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%
Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%
Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%
Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%
Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%