Apr 14, 2021
Data cleaning is naturally framed as probabilistic inference in a generative model, combining a prior distribution over ground-truth databases with a likelihood that models the noisy channel by which the data are filtered and corrupted to yield incomplete, dirty, and denormalized datasets. Based on this view, we present PClean, a probabilistic programming language for leveraging dataset-specific knowledge to clean and normalize dirty data. PClean is powered by (1) a non-parametric model of relational database instances, customizable via probabilistic programs, (2) a sequential Monte Carlo inference algorithm that exploits the model's structure, and (3) near-optimal SMC proposals and blocked Gibbs rejuvenation moves constructed on a per-dataset basis. We show empirically that short (<50-line) PClean programs can be faster and more accurate than generic PPL inference on multiple data-cleaning benchmarks; perform comparably in terms of accuracy and runtime to state-of-the-art data-cleaning systems (unlike generic PPL inference given the same runtime); and scale to real-world datasets with millions of records.
The 24th International Conference on Artificial Intelligence and Statistics was held virtually from Tuesday, 13 April 2021 to Thursday, 15 April 2021.
Professional recording and live streaming, delivered globally.
Presentations on similar topic, category or speaker