Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Self-supervised Representation Learning with Relative Predictive Coding
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-015-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-015-alpha.b-cdn.net
      • sl-yoda-v3-stream-015-beta.b-cdn.net
      • 1963568160.rsc.cdn77.org
      • 1940033649.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Self-supervised Representation Learning with Relative Predictive Coding
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Self-supervised Representation Learning with Relative Predictive Coding

            May 3, 2021

            Speakers

            YHT

            Yao-Hung Hubert Tsai

            Řečník · 1 sledující

            MQM

            Martin Q. Ma

            Řečník · 0 sledujících

            MY

            Muqiao Yang

            Řečník · 0 sledujících

            About

            This paper introduces Relative Predictive Coding (RPC), a new contrastive representation learning objective that maintains a good balance among training stability, minibatch size sensitivity, and downstream task performance. The key to the success of RPC is two-fold. First, RPC introduces the relative parameters to regularize the objective for boundedness and low variance. Second, RPC contains no logarithm and exponential score functions, which are the main cause of training instability in prior…

            Organizer

            I2
            I2

            ICLR 2021

            Účet · 906 sledujících

            Categories

            Umělá inteligence a data science

            Kategorie · 10,8k prezentací

            About ICLR 2021

            The International Conference on Learning Representations (ICLR) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence called representation learning, but generally referred to as deep learning. ICLR is globally renowned for presenting and publishing cutting-edge research on all aspects of deep learning used in the fields of artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, text understanding, gaming, and robotics.

            Like the format? Trust SlidesLive to capture your next event!

            Professional recording and live streaming, delivered globally.

            Sharing

            Recommended Videos

            Presentations on similar topic, category or speaker

            Interactive Weak Supervision: Learning Useful Heuristics for Data Labeling
            05:10

            Interactive Weak Supervision: Learning Useful Heuristics for Data Labeling

            Benedikt Boecking, …

            I2
            I2
            ICLR 2021 4 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Topological Data Analysis
            30:01

            Topological Data Analysis

            Théo Lacombe

            I2
            I2
            ICLR 2021 4 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Invited Talk - Michael Bronstein
            1:24:02

            Invited Talk - Michael Bronstein

            I2
            I2
            ICLR 2021 4 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Go with the flow: Adaptive control for Neural ODEs
            05:03

            Go with the flow: Adaptive control for Neural ODEs

            Mathieu Chalvida, …

            I2
            I2
            ICLR 2021 4 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            CausalWorld: A Robotic Manipulation Benchmark for Causal Structure and Transfer Learning
            05:03

            CausalWorld: A Robotic Manipulation Benchmark for Causal Structure and Transfer Learning

            Ossama Ahmed, …

            I2
            I2
            ICLR 2021 4 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Efficient Abstract Reasoning with Dual-Contrast Network
            05:11

            Efficient Abstract Reasoning with Dual-Contrast Network

            Tao Zhuo, …

            I2
            I2
            ICLR 2021 4 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interested in talks like this? Follow ICLR 2021