Contrastive Divergence Learning is a Time Reversal Adversarial Game

May 3, 2021

Speakers

About

Contrastive divergence (CD) learning is a classical method for fitting unnormalized statistical models to data samples. Despite its wide-spread use, the convergence properties of this algorithm are still not well understood. The main source of difficulty is an unjustified approximation which has been used to derive the gradient of the loss. In this paper, we present an alternative derivation of CD that does not require any approximation and sheds new light on the objective that is actually being optimized by the algorithm. Specifically, we show that CD is an adversarial learning procedure, where a discriminator attempts to classify whether a Markov chain generated from the model has been time-reversed. Thus, although predating generative adversarial networks (GANs) by more than a decade, CD is, in fact, closely related to these techniques. Our derivation settles well with previous observations, which have concluded that CD's update steps cannot be expressed as the gradients of any fixed objective function. In addition, as a byproduct, our derivation reveals a simple correction that can be used as an alternative to Metropolis-Hastings rejection, which is required when the underlying Markov chain is inexact (e.g., when using Langevin dynamics with a large step).

Organizer

Categories

About ICLR 2021

The International Conference on Learning Representations (ICLR) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence called representation learning, but generally referred to as deep learning. ICLR is globally renowned for presenting and publishing cutting-edge research on all aspects of deep learning used in the fields of artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, text understanding, gaming, and robotics.

Like the format? Trust SlidesLive to capture your next event!

Professional recording and live streaming, delivered globally.

Sharing

Recommended Videos

Presentations on similar topic, category or speaker

Interested in talks like this? Follow ICLR 2021