Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: GAN2GAN: Generative Noise Learning for Blind Denoising with Single Noisy Images
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-010-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-010-alpha.b-cdn.net
      • sl-yoda-v2-stream-010-beta.b-cdn.net
      • 1759419103.rsc.cdn77.org
      • 1016618226.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            GAN2GAN: Generative Noise Learning for Blind Denoising with Single Noisy Images
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            GAN2GAN: Generative Noise Learning for Blind Denoising with Single Noisy Images

            May 3, 2021

            Speakers

            SC

            Sungmin Cha

            Speaker · 0 followers

            HH

            Hsiang Hsu

            Speaker · 0 followers

            TH

            Taebaek Hwang

            Speaker · 0 followers

            About

            We tackle a challenging blind image denoising problem, in which only single distinct noisy images are available for training a denoiser, and no information about noise is known, except for it being zero-mean, additive, and independent of the clean image. In such a setting, which often occurs in practice, it is not possible to train a denoiser with the standard discriminative training or with the recently developed Noise2Noise (N2N) training; the former requires the underlying clean image for the…

            Organizer

            About ICLR 2021

            The International Conference on Learning Representations (ICLR) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence called representation learning, but generally referred to as deep learning. ICLR is globally renowned for presenting and publishing cutting-edge research on all aspects of deep learning used in the fields of artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, text understanding, gaming, and robotics.

            Like the format? Trust SlidesLive to capture your next event!

            Professional recording and live streaming, delivered globally.

            Sharing

            Recommended Videos

            Presentations on similar topic, category or speaker

            Interested in talks like this? Follow ICLR 2021