Statistical inference for individual fairness

May 3, 2021



As we rely on machine learning (ML) models to make more consequential decisions, the issue of ML models perpetuating unwanted social biases has come to the fore of the public's and the research community's attention. In this paper, we focus on the problem of detecting violations of individual fairness in ML models. We formalize the problem as measuring the susceptibility of ML models against a form of adversarial attack and develop a suite of inference tools for the adversarial loss. The tools allow practitioners to assess the individual fairness of ML models in a statistically-principled way: form confidence intervals for the adversarial loss and test hypotheses of model fairness with (asymptotic) non-coverage/Type I error rate control. We demonstrate the utility of our tools in a real-world case study.


About ICLR 2021

The International Conference on Learning Representations (ICLR) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence called representation learning, but generally referred to as deep learning. ICLR is globally renowned for presenting and publishing cutting-edge research on all aspects of deep learning used in the fields of artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, text understanding, gaming, and robotics.

Store presentation

Should this presentation be stored for 1000 years?

How do we store presentations

Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%


Recommended Videos

Presentations on similar topic, category or speaker