Category · 1.2k presentations
Category · 3.8k presentations
Category · 14.8k presentations
Category · 491 presentations
Category · 1.3k presentations
Category · 529 presentations
Category · 3.3k presentations
Category · 599 presentations
May 3, 2021
Speaker · 0 followers
Speaker · 0 followers
Speaker · 0 followers
Speaker · 1 follower
Speaker · 0 followers
Speaker · 0 followers
Recent studies have shown that skeletonization (pruning parameters) of networks at initialization provides all the practical benefits of sparsity both at inference and training time, while only marginally degrading their performance. However, we observe that beyond a certain level of sparsity (approx 95%), these approaches fail to preserve the network performance, and to our surprise, in many cases perform even worse than trivial random pruning. To this end, we propose an objective to find a skeletonized network with maximum foresight connection sensitivity (FORCE) whereby the trainability, in terms of connection sensitivity, of a pruned network is taken into consideration. We then propose two approximate procedures to maximize our objective (1) Iterative SNIP: allows parameters that were unimportant at earlier stages of skeletonization to become important at later stages; and (2) FORCE: iterative process that allows exploration by allowing already pruned parameters to resurrect at later stages of skeletonization. Empirical analysis on a large suite of experiments show that our approach, while providing at least as good performance as other recent approaches on moderate pruning levels, provide remarkably improved performance on high pruning levels (could remove up to 99.5% parameters while keeping the networks trainable).Recent studies have shown that skeletonization (pruning parameters) of networks at initialization provides all the practical benefits of sparsity both at inference and training time, while only marginally degrading their performance. However, we observe that beyond a certain level of sparsity (approx 95%), these approaches fail to preserve the network performance, and to our surprise, in many cases perform even worse than trivial random pruning. To this end, we propose an objective to find a ske…
The International Conference on Learning Representations (ICLR) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence called representation learning, but generally referred to as deep learning. ICLR is globally renowned for presenting and publishing cutting-edge research on all aspects of deep learning used in the fields of artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, text understanding, gaming, and robotics.
Professional recording and live streaming, delivered globally.
Presentations on similar topic, category or speaker
Vlad Firoiu, …
Yilun Du, …