Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-013-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-013-alpha.b-cdn.net
      • sl-yoda-v3-stream-013-beta.b-cdn.net
      • 1668715672.rsc.cdn77.org
      • 1420896597.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling

            May 3, 2021

            Speakers

            ĐM

            Đorđe Miladinović

            Řečník · 0 sledujících

            AS

            Aleksandar Stanić

            Řečník · 2 sledující

            SB

            Stefan Bauer

            Řečník · 0 sledujících

            About

            How to improve generative modeling by better exploiting spatial regularities and coherence in images? To answer this question, we introduce a novel neural layer for building image generators (decoders) and apply it to variational autoencoders (VAEs). Our spatial dependency networks (SDNs) compute feature maps in a spatially coherent way, utilizing a sequential gating-based mechanism to distribute contextual information across 2-D maps. Different SDN layers of a deep neural network represent spat…

            Organizer

            I2
            I2

            ICLR 2021

            Účet · 913 sledujících

            About ICLR 2021

            The International Conference on Learning Representations (ICLR) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence called representation learning, but generally referred to as deep learning. ICLR is globally renowned for presenting and publishing cutting-edge research on all aspects of deep learning used in the fields of artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, text understanding, gaming, and robotics.

            Like the format? Trust SlidesLive to capture your next event!

            Professional recording and live streaming, delivered globally.

            Sharing

            Recommended Videos

            Presentations on similar topic, category or speaker

            Oral Session 1 - QA 1
            10:01

            Oral Session 1 - QA 1

            Konda Reddy Mopuri, …

            I2
            I2
            ICLR 2021 4 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Panel Discussion
            1:05:24

            Panel Discussion

            Eric Rice, …

            I2
            I2
            ICLR 2021 4 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Research Accountability in Machine Learning
            28:59

            Research Accountability in Machine Learning

            Inioluwa Deborah Raji

            I2
            I2
            ICLR 2021 4 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Ditto: Fair and Robust Federated Learning Through Personalization
            03:13

            Ditto: Fair and Robust Federated Learning Through Personalization

            Tian Li, …

            I2
            I2
            ICLR 2021 4 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Decoupling Global and Local Representations via Invertible Generative Flows
            04:49

            Decoupling Global and Local Representations via Invertible Generative Flows

            Xuezhe Max Ma, …

            I2
            I2
            ICLR 2021 4 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Oral Session 7 - Q&A 2
            13:29

            Oral Session 7 - Q&A 2

            Krishnamurthy Dvijotham, …

            I2
            I2
            ICLR 2021 4 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interested in talks like this? Follow ICLR 2021