Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Understanding and Improving Lexical Choice in Non-Autoregressive Translation
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-006-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-006-alpha.b-cdn.net
      • sl-yoda-v2-stream-006-beta.b-cdn.net
      • 1549480416.rsc.cdn77.org
      • 1102696603.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Understanding and Improving Lexical Choice in Non-Autoregressive Translation
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Understanding and Improving Lexical Choice in Non-Autoregressive Translation

            May 3, 2021

            Speakers

            LD

            Liang Ding

            Řečník · 1 sledující

            LW

            Longyue Wang

            Řečník · 1 sledující

            XL

            Xuebo Liu

            Řečník · 0 sledujících

            About

            Knowledge distillation (KD) is essential for training non-autoregressive translation (NAT) models by reducing the complexity of the raw data with an autoregressive teacher model. In this study, we empirically show that as a side effect of this training, the lexical choice errors on low-frequency words are propagated to the NAT model from the teacher model. To alleviate this problem, we propose to expose the raw data to NAT models to restore the useful information of low-frequency words, which ar…

            Organizer

            I2
            I2

            ICLR 2021

            Účet · 906 sledujících

            About ICLR 2021

            The International Conference on Learning Representations (ICLR) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence called representation learning, but generally referred to as deep learning. ICLR is globally renowned for presenting and publishing cutting-edge research on all aspects of deep learning used in the fields of artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, text understanding, gaming, and robotics.

            Like the format? Trust SlidesLive to capture your next event!

            Professional recording and live streaming, delivered globally.

            Sharing

            Recommended Videos

            Presentations on similar topic, category or speaker

            Dynamic Tensor Rematerialization
            10:04

            Dynamic Tensor Rematerialization

            Marisa Kirisame, …

            I2
            I2
            ICLR 2021 4 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Learning Energy-Based Models by Diffusion Recovery Likelihood
            06:03

            Learning Energy-Based Models by Diffusion Recovery Likelihood

            Ruiqi Gao, …

            I2
            I2
            ICLR 2021 4 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Few-Shot Bayesian Optimization with Deep Kernel Surrogates
            05:18

            Few-Shot Bayesian Optimization with Deep Kernel Surrogates

            Martin Wistuba, …

            I2
            I2
            ICLR 2021 4 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Robust Conversational AI with Grounded Text Generation
            1:01:07

            Robust Conversational AI with Grounded Text Generation

            Jianfeng Gao, …

            I2
            I2
            ICLR 2021 4 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Co-clustering of evolving count matrices in pharmacovigilance with the dynamic latent block model
            10:05

            Co-clustering of evolving count matrices in pharmacovigilance with the dynamic latent block model

            Giulia Marchello, …

            I2
            I2
            ICLR 2021 4 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Simulation-Based Scoring for Asynchronous Hyperparameter Search
            02:09

            Simulation-Based Scoring for Asynchronous Hyperparameter Search

            Matthias Seeger, …

            I2
            I2
            ICLR 2021 4 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interested in talks like this? Follow ICLR 2021