Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Cross-modal Domain Adaptation for Cost-Efficient Visual Reinforcement Learning
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-012-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-012-alpha.b-cdn.net
      • sl-yoda-v3-stream-012-beta.b-cdn.net
      • 1338956956.rsc.cdn77.org
      • 1656830687.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Cross-modal Domain Adaptation for Cost-Efficient Visual Reinforcement Learning
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Cross-modal Domain Adaptation for Cost-Efficient Visual Reinforcement Learning

            Dez 6, 2021

            Sprecher:innen

            XC

            Xiong-Hui Chen

            Sprecher:in · 0 Follower:innen

            SJ

            Shengyi Jiang

            Sprecher:in · 0 Follower:innen

            FX

            Feng Xu

            Sprecher:in · 0 Follower:innen

            Über

            In visual-input sim-to-real scenarios, to overcome the reality gap between images rendered in simulators and those from the real world, domain adaptation, i.e., learning an aligned representation space between simulators and the real world, then training and deploying policies in the aligned representation, is a promising direction. Previous methods focus on same-modal domain adaptation. However, those methods require building and running simulators that render high-quality images, which can be…

            Organisator

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Machine Learning in Automating Carbon Sequestration Site Assessment
            03:58

            Machine Learning in Automating Carbon Sequestration Site Assessment

            Jay Chen, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Rethinking Neural Operations for Diverse Tasks
            10:26

            Rethinking Neural Operations for Diverse Tasks

            Nick Roberts, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            How Modular should Neural Module Networks Be for Systematic Generalization?
            14:17

            How Modular should Neural Module Networks Be for Systematic Generalization?

            Vanessa D'Amario, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 1 = 0.1%

            Unbiased Classification through Bias-Contrastive and Bias-Balanced Learning
            11:29

            Unbiased Classification through Bias-Contrastive and Bias-Balanced Learning

            Youngkyu Hong, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            On the Approximation of Heterogeneous Cooperative Multi-agent Reinforcement Learning (MARL) via Mean-Field Control (MFC)
            14:54

            On the Approximation of Heterogeneous Cooperative Multi-agent Reinforcement Learning (MARL) via Mean-Field Control (MFC)

            W. U. Mondal, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Parallel and Efficient Hierarchical k-Median Clustering
            14:39

            Parallel and Efficient Hierarchical k-Median Clustering

            Vincent Cohen-addad, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen