Další
Živý přenos začne již brzy!
Živý přenos již skončil.
Prezentace ještě nebyla nahrána!
  • title: Cross-modal Domain Adaptation for Cost-Efficient Visual Reinforcement Learning
      0:00 / 0:00
      • Nahlásit chybu
      • Nastavení
      • Playlisty
      • Záložky
      • Titulky Off
      • Rychlost přehrávání
      • Kvalita
      • Nastavení
      • Debug informace
      • Server sl-yoda-v3-stream-012-alpha.b-cdn.net
      • Velikost titulků Střední
      • Záložky
      • Server
      • sl-yoda-v3-stream-012-alpha.b-cdn.net
      • sl-yoda-v3-stream-012-beta.b-cdn.net
      • 1338956956.rsc.cdn77.org
      • 1656830687.rsc.cdn77.org
      • Titulky
      • Off
      • English
      • Rychlost přehrávání
      • Kvalita
      • Velikost titulků
      • Velké
      • Střední
      • Malé
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      Moje playlisty
        Záložky
          00:00:00
            Cross-modal Domain Adaptation for Cost-Efficient Visual Reinforcement Learning
            • Nastavení
            • Sync diff
            • Kvalita
            • Nastavení
            • Server
            • Kvalita
            • Server

            Cross-modal Domain Adaptation for Cost-Efficient Visual Reinforcement Learning

            6. prosince 2021

            Řečníci

            XC

            Xiong-Hui Chen

            Sprecher:in · 0 Follower:innen

            SJ

            Shengyi Jiang

            Sprecher:in · 0 Follower:innen

            FX

            Feng Xu

            Sprecher:in · 0 Follower:innen

            O prezentaci

            In visual-input sim-to-real scenarios, to overcome the reality gap between images rendered in simulators and those from the real world, domain adaptation, i.e., learning an aligned representation space between simulators and the real world, then training and deploying policies in the aligned representation, is a promising direction. Previous methods focus on same-modal domain adaptation. However, those methods require building and running simulators that render high-quality images, which can be…

            Organizátor

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            O organizátorovi (NeurIPS 2021)

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Baví vás formát? Nechte SlidesLive zachytit svou akci!

            Profesionální natáčení a streamování po celém světě.

            Sdílení

            Doporučená videa

            Prezentace na podobné téma, kategorii nebo přednášejícího

            The Elastic Lottery Ticket Hypothesis
            10:13

            The Elastic Lottery Ticket Hypothesis

            Xiaohan Chen, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Characterizing the risk of fairwashing
            14:19

            Characterizing the risk of fairwashing

            Ulrich Aïvodji, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Is Curiosity All You Need? On the Utility of Emergent Behaviours from Curious Exploration
            04:22

            Is Curiosity All You Need? On the Utility of Emergent Behaviours from Curious Exploration

            Oliver Groth, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            BASALT: A MineRL Competition on Solving Human-Judged Tasks
            19:13

            BASALT: A MineRL Competition on Solving Human-Judged Tasks

            Rohin Shah, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            NaturalProofs: Mathematical Theorem Proving in Natural Language
            15:54

            NaturalProofs: Mathematical Theorem Proving in Natural Language

            Sean Welleck, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Revisiting Smoothed Online Learning
            12:36

            Revisiting Smoothed Online Learning

            Lijun Zhang, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Zajímají Vás podobná videa? Sledujte NeurIPS 2021