Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Confidence-Aware Imitation Learning from Demonstrations with Varying Optimality
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-011-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-011-alpha.b-cdn.net
      • sl-yoda-v3-stream-011-beta.b-cdn.net
      • 1150868944.rsc.cdn77.org
      • 1511650057.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Confidence-Aware Imitation Learning from Demonstrations with Varying Optimality
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Confidence-Aware Imitation Learning from Demonstrations with Varying Optimality

            Dec 6, 2021

            Speakers

            SZ

            Songyuan Zhang

            Řečník · 0 sledujících

            ZC

            Zhangjie Cao

            Řečník · 0 sledujících

            DS

            Dorsa Sadigh

            Řečník · 0 sledujících

            About

            Most existing imitation learning approaches assume the demonstrations are drawn from experts who are optimal, but relaxing this assumption enables us to tackle a much wider range of data. Standard imitation learning fails when learning from demonstrations with varying optimality, and only learns suboptimal policies. Previous works use confidence scores or rankings to capture beneficial information from demonstrations with varying optimality, but they suffer from many limitations, e.g., manually…

            Organizer

            N2
            N2

            NeurIPS 2021

            Účet · 1,9k sledujících

            About NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Like the format? Trust SlidesLive to capture your next event!

            Professional recording and live streaming, delivered globally.

            Sharing

            Recommended Videos

            Presentations on similar topic, category or speaker

            DP-KB: Data Programming with Knowledge Bases Improves Transformer Fine Tuning for Answer Sentence Selection
            10:08

            DP-KB: Data Programming with Knowledge Bases Improves Transformer Fine Tuning for Answer Sentence Selection

            Nic Jedema, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Benchmark for Romanian Language Tasks
            04:27

            Benchmark for Romanian Language Tasks

            Stefan Dumitrescu

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Few-Shot Learning for Low-Resource Languages
            41:09

            Few-Shot Learning for Low-Resource Languages

            David Ifeoluwa Adelani

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Neural Routing by Memory
            06:41

            Neural Routing by Memory

            Kaipeng Zhang, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis
            22:34

            Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis

            Yicheng Luo, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Successor Feature Landmarks for Long-Horizon Goal-Conditioned Reinforcement Learning
            14:57

            Successor Feature Landmarks for Long-Horizon Goal-Conditioned Reinforcement Learning

            Christopher Hoang, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interested in talks like this? Follow NeurIPS 2021