Adversarial Teacher-Student Representation Learning for Domain Generalization

Dec 6, 2021

Speakers

About

Domain generalization (DG) aims to transfer the learning task from a single or multiple source domains to unseen target domains. To extract and leverage the information which exhibits sufficient generalization ability, we propose a simple yet effective approach of Adversarial Teacher-Student Representation Learning, with the goal of deriving the domain generalizable representations via generating and exploring out-of-source data distributions. Our proposed framework advances Teacher-Student learning in an adversarial learning manner, which alternates between knowledge-distillation based representation learning and novel-domain data augmentation. The former progressively updates the teacher network for deriving domain-generalizable representations, while the latter synthesizes data out-of-source yet plausible distributions. Extensive image classification experiments on benchmark datasets in multiple and single source DG settings confirm that, our model exhibits sufficient generalization ability and performs favorably against state-of-the-art DG methods.

Organizer

About NeurIPS 2021

Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

Like the format? Trust SlidesLive to capture your next event!

Professional recording and live streaming, delivered globally.

Sharing

Recommended Videos

Presentations on similar topic, category or speaker

Interested in talks like this? Follow NeurIPS 2021