Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Near-optimal Offline and Streaming Algorithms for Learning Non-Linear Dynamical Systems
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-014-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-014-alpha.b-cdn.net
      • sl-yoda-v3-stream-014-beta.b-cdn.net
      • 1978117156.rsc.cdn77.org
      • 1243944885.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Near-optimal Offline and Streaming Algorithms for Learning Non-Linear Dynamical Systems
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Near-optimal Offline and Streaming Algorithms for Learning Non-Linear Dynamical Systems

            Dec 6, 2021

            Speakers

            PJ
            PJ

            Prateek Jain

            Řečník · 0 sledujících

            SSK

            Suhas S Kowshik

            Řečník · 0 sledujících

            DN

            Dheeraj Nagaraj

            Řečník · 1 sledující

            About

            We consider the setting of vector valued non-linear dynamical systems X_t+1 = ϕ(A^* X_t) + η_t, where η_t is unbiased noise and ϕ : ℝ→ℝ is a known link function that satisfies certain expansivity property. The goal is to learn A^* from a single trajectory X_1,... , X_T of dependent or correlated samples.While the problem is well-studied in the linear case, where ϕ is identity, with optimal error rates even for non-mixing systems, existing results in the non-linear case hold only for mixing syste…

            Organizer

            N2
            N2

            NeurIPS 2021

            Účet · 1,9k sledujících

            About NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Like the format? Trust SlidesLive to capture your next event!

            Professional recording and live streaming, delivered globally.

            Sharing

            Recommended Videos

            Presentations on similar topic, category or speaker

            Goal-Aware Cross-Entropy for Multi-Target Reinforcement Learning
            11:15

            Goal-Aware Cross-Entropy for Multi-Target Reinforcement Learning

            Kibeom Kim, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Subgroup Generalization and Fairness of Graph Neural Networks
            14:45

            Subgroup Generalization and Fairness of Graph Neural Networks

            Jiaqi Ma, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Low-Rank Extragradient Method for Nonsmooth and Low-Rank Matrix Optimization Problems
            15:01

            Low-Rank Extragradient Method for Nonsmooth and Low-Rank Matrix Optimization Problems

            Dan Garber, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Introduction to Control Systems
            43:31

            Introduction to Control Systems

            Toshiyuki Ohtsuka

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Deep Extended Hazard Models for Survival Analysis
            11:54

            Deep Extended Hazard Models for Survival Analysis

            Qixian Zhong, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            On Covariate Shift of Latent Confounders in Imitation and Reinforcement Learning
            19:13

            On Covariate Shift of Latent Confounders in Imitation and Reinforcement Learning

            Guy Tennenholtz, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interested in talks like this? Follow NeurIPS 2021