Další
Živý přenos začne již brzy!
Živý přenos již skončil.
Prezentace ještě nebyla nahrána!
  • title: TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classication
      0:00 / 0:00
      • Nahlásit chybu
      • Nastavení
      • Playlisty
      • Záložky
      • Titulky Off
      • Rychlost přehrávání
      • Kvalita
      • Nastavení
      • Debug informace
      • Server sl-yoda-v3-stream-014-alpha.b-cdn.net
      • Velikost titulků Střední
      • Záložky
      • Server
      • sl-yoda-v3-stream-014-alpha.b-cdn.net
      • sl-yoda-v3-stream-014-beta.b-cdn.net
      • 1978117156.rsc.cdn77.org
      • 1243944885.rsc.cdn77.org
      • Titulky
      • Off
      • English
      • Rychlost přehrávání
      • Kvalita
      • Velikost titulků
      • Velké
      • Střední
      • Malé
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      Moje playlisty
        Záložky
          00:00:00
            TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classication
            • Nastavení
            • Sync diff
            • Kvalita
            • Nastavení
            • Server
            • Kvalita
            • Server

            TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classication

            6. prosince 2021

            Řečníci

            ZS

            Zhuchen Shao

            Speaker · 0 followers

            HB

            Hao Bian

            Speaker · 0 followers

            YC

            Yang Chen

            Speaker · 0 followers

            O prezentaci

            Multiple instance learning (MIL) is a powerful tool to solve the weakly supervised classification in whole slide image (WSI) based pathology diagnosis. However, the current MIL methods are usually based on independent and identical distribution hypothesis, thus neglect the correlation among different instances. To address this problem, we proposed a new framework, called correlated MIL, and provided a proof for convergence. Based on this framework, we devised a Transformer based MIL (TransMIL),…

            Organizátor

            N2
            N2

            NeurIPS 2021

            Account · 1.9k followers

            O organizátorovi (NeurIPS 2021)

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Baví vás formát? Nechte SlidesLive zachytit svou akci!

            Profesionální natáčení a streamování po celém světě.

            Sdílení

            Doporučená videa

            Prezentace na podobné téma, kategorii nebo přednášejícího

            Cutting Down on Prompts and Parameters: Simple Few-Shot Learning with Language Models
            05:06

            Cutting Down on Prompts and Parameters: Simple Few-Shot Learning with Language Models

            Robert Logan, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Total of 1 viewers voted for saving the presentation to eternal vault which is 0.1%

            Stochastic Shortest Path: Minimax, Parameter-Free and Towards Horizon-Free Regret
            13:47

            Stochastic Shortest Path: Minimax, Parameter-Free and Towards Horizon-Free Regret

            Jean Tarbouriech, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            Leveraging Distribution Alignment via Stein Path for Cross-Domain Cold-Start Recommendation
            05:13

            Leveraging Distribution Alignment via Stein Path for Cross-Domain Cold-Start Recommendation

            Weiming Liu, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            Paradox of robustness, genome overwiring, and deep learning
            25:38

            Paradox of robustness, genome overwiring, and deep learning

            Steve Frank

            N2
            N2
            NeurIPS 2021 3 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            Neural Production Systems
            12:47

            Neural Production Systems

            Aniket Didolkar, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            Entropic Issues in Likelihood-Based OOD Detection
            02:41

            Entropic Issues in Likelihood-Based OOD Detection

            Anthony Caterini, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            Zajímají Vás podobná videa? Sledujte NeurIPS 2021