Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classication
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-014-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-014-alpha.b-cdn.net
      • sl-yoda-v3-stream-014-beta.b-cdn.net
      • 1978117156.rsc.cdn77.org
      • 1243944885.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classication
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classication

            Dec 6, 2021

            Speakers

            ZS

            Zhuchen Shao

            Řečník · 0 sledujících

            HB

            Hao Bian

            Řečník · 0 sledujících

            YC

            Yang Chen

            Řečník · 0 sledujících

            About

            Multiple instance learning (MIL) is a powerful tool to solve the weakly supervised classification in whole slide image (WSI) based pathology diagnosis. However, the current MIL methods are usually based on independent and identical distribution hypothesis, thus neglect the correlation among different instances. To address this problem, we proposed a new framework, called correlated MIL, and provided a proof for convergence. Based on this framework, we devised a Transformer based MIL (TransMIL),…

            Organizer

            N2
            N2

            NeurIPS 2021

            Účet · 1,9k sledujících

            About NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Like the format? Trust SlidesLive to capture your next event!

            Professional recording and live streaming, delivered globally.

            Sharing

            Recommended Videos

            Presentations on similar topic, category or speaker

            Preregistration: Introduction and Application to ML
            30:20

            Preregistration: Introduction and Application to ML

            Sarahanna M. Field

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Developing Trustworthy AI for Weather and Climate
            40:58

            Developing Trustworthy AI for Weather and Climate

            Amy McGovern

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Infinite Time Horizon Safety of Bayesian Neural Networks
            14:05

            Infinite Time Horizon Safety of Bayesian Neural Networks

            Mathias Lechner, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            On the Approximation of Heterogeneous Cooperative Multi-agent Reinforcement Learning (MARL) via Mean-Field Control (MFC)
            14:54

            On the Approximation of Heterogeneous Cooperative Multi-agent Reinforcement Learning (MARL) via Mean-Field Control (MFC)

            W. U. Mondal, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Extracting Deformation-Aware Local Features by Learning to Deform
            14:00

            Extracting Deformation-Aware Local Features by Learning to Deform

            Guilherme Potje, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Independent mechanism analysis, a new concept?
            18:44

            Independent mechanism analysis, a new concept?

            Julius von Kügelgen

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interested in talks like this? Follow NeurIPS 2021