Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Reinforced Few-Shot Acquisition Function Learning for Bayesian Optimization
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-012-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-012-alpha.b-cdn.net
      • sl-yoda-v3-stream-012-beta.b-cdn.net
      • 1338956956.rsc.cdn77.org
      • 1656830687.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Reinforced Few-Shot Acquisition Function Learning for Bayesian Optimization
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Reinforced Few-Shot Acquisition Function Learning for Bayesian Optimization

            Dec 6, 2021

            Speakers

            BH

            Bing-Jing Hsieh

            Řečník · 0 sledujících

            PH

            Ping-Chun Hsieh

            Řečník · 0 sledujících

            XL

            Xi Liu

            Řečník · 0 sledujících

            About

            Bayesian optimization (BO) conventionally relies on handcrafted acquisition functions (AFs) to sequentially determine the sample points. However, it has been widely observed in practice that the best-performing AF in terms of regret can vary significantly under different types of black-box functions. It has remained a challenge to design one AF that can attain the best performance over a wide variety of black-box functions. This paper aims to attack this challenge through the perspective of rein…

            Organizer

            N2
            N2

            NeurIPS 2021

            Účet · 1,9k sledujících

            About NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Like the format? Trust SlidesLive to capture your next event!

            Professional recording and live streaming, delivered globally.

            Sharing

            Recommended Videos

            Presentations on similar topic, category or speaker

            Robots go Deep
            30:11

            Robots go Deep

            Tomáš Svoboda, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Fast Doubly-Adaptive MCMC to Estimate the Gibbs Partition Function with Weak Mixing Time Bounds
            14:01

            Fast Doubly-Adaptive MCMC to Estimate the Gibbs Partition Function with Weak Mixing Time Bounds

            Shahrzad Haddadan, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Best-of-All-Worlds  Bounds for Online Learning with Feedback Graphs
            10:27

            Best-of-All-Worlds Bounds for Online Learning with Feedback Graphs

            Liad Erez, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            E(n) Equivariant Normalizing Flows
            19:16

            E(n) Equivariant Normalizing Flows

            Victor Garcia Satorras, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Physics-Guided AL for Modeling Autonomous Vehicle Dynamics
            34:07

            Physics-Guided AL for Modeling Autonomous Vehicle Dynamics

            Rose Yu

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Learning Transferable Adversarial Perturbations
            12:00

            Learning Transferable Adversarial Perturbations

            Krishna Kanth Nakka, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interested in talks like this? Follow NeurIPS 2021