Další
Živý přenos začne již brzy!
Živý přenos již skončil.
Prezentace ještě nebyla nahrána!
  • title: Generalizable Imitation Learning from Observation via Inferring Goal Proximity
      0:00 / 0:00
      • Nahlásit chybu
      • Nastavení
      • Playlisty
      • Záložky
      • Titulky Off
      • Rychlost přehrávání
      • Kvalita
      • Nastavení
      • Debug informace
      • Server sl-yoda-v2-stream-001-alpha.b-cdn.net
      • Velikost titulků Střední
      • Záložky
      • Server
      • sl-yoda-v2-stream-001-alpha.b-cdn.net
      • sl-yoda-v2-stream-001-beta.b-cdn.net
      • 1824830694.rsc.cdn77.org
      • 1979322955.rsc.cdn77.org
      • Titulky
      • Off
      • English
      • Rychlost přehrávání
      • Kvalita
      • Velikost titulků
      • Velké
      • Střední
      • Malé
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      Moje playlisty
        Záložky
          00:00:00
            Generalizable Imitation Learning from Observation via Inferring Goal Proximity
            • Nastavení
            • Sync diff
            • Kvalita
            • Nastavení
            • Server
            • Kvalita
            • Server

            Generalizable Imitation Learning from Observation via Inferring Goal Proximity

            6. prosince 2021

            Řečníci

            YL

            Youngwoon Lee

            Sprecher:in · 0 Follower:innen

            AS

            Andrew Szot

            Sprecher:in · 0 Follower:innen

            SS

            Shao-Hua Sun

            Sprecher:in · 0 Follower:innen

            O prezentaci

            Task progress is intuitive and readily available task information that can guide an agent closer to the desired goal. Furthermore, a progress estimator can generalize to new situations. From this intuition, we propose a simple yet effective imitation learning from observation method for a goal-directed task using a learned goal proximity function as a task progress estimator, for better generalization to unseen states and goals. We obtain this goal proximity function from expert demonstrations a…

            Organizátor

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            O organizátorovi (NeurIPS 2021)

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Baví vás formát? Nechte SlidesLive zachytit svou akci!

            Profesionální natáčení a streamování po celém světě.

            Sdílení

            Doporučená videa

            Prezentace na podobné téma, kategorii nebo přednášejícího

            Fast and accurate randomized algorithms for low-rank tensor decompositions
            12:52

            Fast and accurate randomized algorithms for low-rank tensor decompositions

            Linjian Ma, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            New perspectives on habit formation from machine learning and neuroeconomics
            20:00

            New perspectives on habit formation from machine learning and neuroeconomics

            Colin Camerer

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Session 4: Q&A
            37:53

            Session 4: Q&A

            Elias Bareinboim, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            On the Expressivity of Markov Reward
            24:59

            On the Expressivity of Markov Reward

            Dave Abel, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Provably Efficient Multi-Task Reinforcement Learning with Model Transfer
            14:15

            Provably Efficient Multi-Task Reinforcement Learning with Model Transfer

            Chicheng Zhang, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Generalization Bounds For Meta-Learning: An Information-Theoretic Analysis
            11:45

            Generalization Bounds For Meta-Learning: An Information-Theoretic Analysis

            Qi Chen, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Zajímají Vás podobná videa? Sledujte NeurIPS 2021