Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Learning-Augmented Dynamic Power Management with Multiple States via New Ski Rental Bounds
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-015-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-015-alpha.b-cdn.net
      • sl-yoda-v3-stream-015-beta.b-cdn.net
      • 1963568160.rsc.cdn77.org
      • 1940033649.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Learning-Augmented Dynamic Power Management with Multiple States via New Ski Rental Bounds
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Learning-Augmented Dynamic Power Management with Multiple States via New Ski Rental Bounds

            Dez 6, 2021

            Sprecher:innen

            AA

            Antonios Antoniadis

            Sprecher:in · 0 Follower:innen

            CC

            Christian Coester

            Sprecher:in · 0 Follower:innen

            ME

            Marek Eliáš

            Sprecher:in · 0 Follower:innen

            Über

            We study the online problem of minimizing power consumption in systems with multiple power-saving states. During idle periods of unknown lengths, an algorithm has to choose between power-saving states of different energy consumption and wake-up costs. We develop a learning-augmented online algorithm that makes decisions based on (potentially inaccurate) predicted lengths of the idle periods. The algorithm's performance is near-optimal when predictions are accurate and degrades gracefully with in…

            Organisator

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Learning in Multi-Stage Decentralized Matching Markets
            08:04

            Learning in Multi-Stage Decentralized Matching Markets

            Xiaowu Dai, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Better Lee Bounds
            25:20

            Better Lee Bounds

            Vira Semenova

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Shaping embodied agent behavior with activity-context priors from egocentric video
            12:40

            Shaping embodied agent behavior with activity-context priors from egocentric video

            Tushar Nagarajan, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Research panel
            1:04:51

            Research panel

            David Dunson, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Embodiment Perspective of Reward Definition for Behavioural Homeostasis
            05:00

            Embodiment Perspective of Reward Definition for Behavioural Homeostasis

            Naoto Yoshida, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            On Model Calibration of Long-Tailed Object Detection and Instance Segmentation
            11:49

            On Model Calibration of Long-Tailed Object Detection and Instance Segmentation

            Tai-Yu Pan, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen