6. prosince 2021
This study develops a calibrated beam-based algorithm with global awareness for neural abstractive summarization, aiming to improve the local optimality problem of the original beam search in a rigorous way. Specifically, a novel global protocol is proposed based on the attention distribution to stipulate how a global optimal hypothesis should attend to the source. A global scoring function is then developed to regulate beam search to generate summaries in a more near-global optimal fashion. This novel design enjoys a distinctive property, i.e. the global attention distribution could be predicted before inference, enabling stepwise improvements on the beam search through the global scoring function. Extensive experiments on 9 datasets show that the global-aware inference significantly improves state-of-the-art summarization models even using empirical hyper-parameters. The algorithm is also proven robust as it remains to generate meaningful texts with corrupted attention distributions. The codes and a comprehensive set of examples are available in supplementary materials.This study develops a calibrated beam-based algorithm with global awareness for neural abstractive summarization, aiming to improve the local optimality problem of the original beam search in a rigorous way. Specifically, a novel global protocol is proposed based on the attention distribution to stipulate how a global optimal hypothesis should attend to the source. A global scoring function is then developed to regulate beam search to generate summaries in a more near-global optimal fashion. Thi…
Účet · 1,9k sledujících
Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.
Profesionální natáčení a streamování po celém světě.
Prezentace na podobné téma, kategorii nebo přednášejícího
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Hager Radi, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Ying Wei, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Gokul Swamy, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Chen Tang, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %