Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: It Has Potential: Gradient-Driven Denoisers for Convergent Solutions to Inverse Problems
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-007-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-007-alpha.b-cdn.net
      • sl-yoda-v2-stream-007-beta.b-cdn.net
      • 1678031076.rsc.cdn77.org
      • 1932936657.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            It Has Potential: Gradient-Driven Denoisers for Convergent Solutions to Inverse Problems
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            It Has Potential: Gradient-Driven Denoisers for Convergent Solutions to Inverse Problems

            Dec 6, 2021

            Speakers

            RC

            Regev Cohen

            Řečník · 0 sledujících

            YB

            Yochai Blau

            Řečník · 1 sledující

            DF

            Daniel Freedman

            Řečník · 0 sledujících

            About

            In recent years there has been increasing interest in leveraging denoisers for solving general inverse problems. Two leading frameworks are regularization-by-denoising (RED) and plug-and-play priors (PnP) which incorporate explicit likelihood functions with priors induced by image denoising algorithms. RED and PnP have shown state-of-the-art performance in diverse imaging tasks when powerful denoisers are used, such as convolutional neural networks (CNNs). However, such denoisers typically do no…

            Organizer

            N2
            N2

            NeurIPS 2021

            Účet · 1,9k sledujících

            About NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Like the format? Trust SlidesLive to capture your next event!

            Professional recording and live streaming, delivered globally.

            Sharing

            Recommended Videos

            Presentations on similar topic, category or speaker

            Successor Feature Landmarks for Long-Horizon Goal-Conditioned Reinforcement Learning
            14:57

            Successor Feature Landmarks for Long-Horizon Goal-Conditioned Reinforcement Learning

            Christopher Hoang, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Submission Strategies
            02:03

            Submission Strategies

            Divakar Roy

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Real-Time Optimization for Model Predictive Control
            50:06

            Real-Time Optimization for Model Predictive Control

            Toshiyuki Ohtsuka

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Online Multi-Armed Bandits with Adaptive Inference
            17:11

            Online Multi-Armed Bandits with Adaptive Inference

            Maria Dimakopoulou, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Conservative Offline Distributional Reinforcement Learning
            13:54

            Conservative Offline Distributional Reinforcement Learning

            Yecheng Jason Ma, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Object-aware Contrastive Learning for Debiased Scene Representation
            10:25

            Object-aware Contrastive Learning for Debiased Scene Representation

            Sangwoo Mo, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interested in talks like this? Follow NeurIPS 2021