Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Bridging Non Co-occurrence with Unlabeled In-the-wild Data for Incremental Object Detection
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-005-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-005-alpha.b-cdn.net
      • sl-yoda-v2-stream-005-beta.b-cdn.net
      • 1034628162.rsc.cdn77.org
      • 1409346856.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Bridging Non Co-occurrence with Unlabeled In-the-wild Data for Incremental Object Detection
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Bridging Non Co-occurrence with Unlabeled In-the-wild Data for Incremental Object Detection

            Dec 6, 2021

            Speakers

            ND

            Na Dong

            Řečník · 0 sledujících

            YZ

            Yongqiang Zhang

            Řečník · 0 sledujících

            MD

            Mingli Ding

            Řečník · 0 sledujících

            About

            Deep networks have shown remarkable results in the task of object detection. However, their performance suffers critical drops when they are subsequently trained on novel classes without any sample from the base classes originally used to train the model. This phenomenon is known as catastrophic forgetting. Recently, several incremental learning methods are proposed to mitigate catastrophic forgetting for object detection. Despite the effectiveness, these methods require co-occurrence of the unl…

            Organizer

            N2
            N2

            NeurIPS 2021

            Účet · 1,9k sledujících

            About NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Like the format? Trust SlidesLive to capture your next event!

            Professional recording and live streaming, delivered globally.

            Sharing

            Recommended Videos

            Presentations on similar topic, category or speaker

            PettingZoo: Gym for Multi-Agent Reinforcement Learning
            12:29

            PettingZoo: Gym for Multi-Agent Reinforcement Learning

            Justin K. Terry, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Benchmarks for Multi-Objective Hyperparameter Optimization
            37:10

            Benchmarks for Multi-Objective Hyperparameter Optimization

            Kevin Duh

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Bootstrapping the Error of Oja's Algorithm
            15:25

            Bootstrapping the Error of Oja's Algorithm

            Purnamrita Sarkar, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Reward is enough for convex MDPs
            14:12

            Reward is enough for convex MDPs

            Tom Zahavy, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            General Low-rank Matrix Optimization: Geometric Analysis and Sharper Bounds
            12:42

            General Low-rank Matrix Optimization: Geometric Analysis and Sharper Bounds

            Haixiang Zhang, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Noisy Adaptation Generates Lévy Flights in Attractor Neural Networks
            13:50

            Noisy Adaptation Generates Lévy Flights in Attractor Neural Networks

            Xingsi Dong, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interested in talks like this? Follow NeurIPS 2021