Dec 6, 2021
Researchers and practitioners in the field of reinforcement learning (RL) frequently leverage parallel computation, which has led to a plethora of new algorithms and systems in the last few years. In this paper, we re-examine the challenges posed by distributed RL and try to view it through the lens of an old idea: distributed dataflow. We show that viewing RL as a dataflow problem leads to highly composable and performant implementations. We propose AnonFlow, a hybrid actor-dataflow programming model for distributed RL, and validate its practicality by porting the full suite of algorithms in RLlib, a widely adopted distributed RL library. Concretely, AnonFlow provides 2-9x code savings in real production code and enables the composition of multi-agent algorithms not possible by end users before. Our code is open-source and will be linked to in the deanonymized paper.
Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.
Professional recording and live streaming, delivered globally.
Presentations on similar topic, category or speaker