Další
Živý přenos začne již brzy!
Živý přenos již skončil.
Prezentace ještě nebyla nahrána!
  • title: Generalized Data Weighting via Class-Level Gradient Flow Manipulation
      0:00 / 0:00
      • Nahlásit chybu
      • Nastavení
      • Playlisty
      • Záložky
      • Titulky Off
      • Rychlost přehrávání
      • Kvalita
      • Nastavení
      • Debug informace
      • Server sl-yoda-v3-stream-014-alpha.b-cdn.net
      • Velikost titulků Střední
      • Záložky
      • Server
      • sl-yoda-v3-stream-014-alpha.b-cdn.net
      • sl-yoda-v3-stream-014-beta.b-cdn.net
      • 1978117156.rsc.cdn77.org
      • 1243944885.rsc.cdn77.org
      • Titulky
      • Off
      • English
      • Rychlost přehrávání
      • Kvalita
      • Velikost titulků
      • Velké
      • Střední
      • Malé
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      Moje playlisty
        Záložky
          00:00:00
            Generalized Data Weighting via Class-Level Gradient Flow Manipulation
            • Nastavení
            • Sync diff
            • Kvalita
            • Nastavení
            • Server
            • Kvalita
            • Server

            Generalized Data Weighting via Class-Level Gradient Flow Manipulation

            6. prosince 2021

            Řečníci

            CC

            Can Chen

            Speaker · 0 followers

            SZ

            Shuhao Zheng

            Speaker · 0 followers

            XC

            Xi Chen

            Speaker · 0 followers

            O prezentaci

            Label noise and class imbalance are two major issues coexisting in real-world datasets. To alleviate the two issues, state-of-the-art methods reweight each instance by leveraging a small amount of clean and unbiased data. Yet, these methods overlook class-level information within each instance, which can be further utilized to improve performance. To this end, in this paper, we propose Generalized Data Weighting (GDW) to simultaneously mitigate label noise and class imbalance by manipulating gra…

            Organizátor

            N2
            N2

            NeurIPS 2021

            Account · 1.9k followers

            O organizátorovi (NeurIPS 2021)

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Baví vás formát? Nechte SlidesLive zachytit svou akci!

            Profesionální natáčení a streamování po celém světě.

            Sdílení

            Doporučená videa

            Prezentace na podobné téma, kategorii nebo přednášejícího

            Efficient Statistical Assessment of Neural Network Corruption Robustness
            11:41

            Efficient Statistical Assessment of Neural Network Corruption Robustness

            Karim Tit, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning
            14:05

            SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning

            Sungmin Cha, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            Dimensionality Reduction for Wasserstein Barycenter
            11:11

            Dimensionality Reduction for Wasserstein Barycenter

            Zach Izzo, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            On the Convergence Theory of Debiased Model-Agnostic Meta-Reinforcement Learning
            12:25

            On the Convergence Theory of Debiased Model-Agnostic Meta-Reinforcement Learning

            Alireza Fallah, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            Learning to Generate Visual Questions with Noisy Supervision
            14:54

            Learning to Generate Visual Questions with Noisy Supervision

            Kai Shen, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            Opening Speech
            05:46

            Opening Speech

            Pascal Poupart

            N2
            N2
            NeurIPS 2021 3 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            Zajímají Vás podobná videa? Sledujte NeurIPS 2021