6. prosince 2021
Řečník · 0 sledujících
Řečník · 0 sledujících
Řečník · 0 sledujících
Knowledge distillation constitutes a simple yet effective way to improve the performance of a compact student network by exploiting the knowledge of a more powerful teacher. Nevertheless, the knowledge distillation literature remains limited to the scenario where the student and the teacher tackle the same task. Here, we investigate the problem of transferring knowledge not only across architectures but also across tasks. To this end, we study the case of object detection and, instead of following the standard detector-to-detector distillation approach, introduce a classifier-to-detector knowledge transfer framework. In particular, we propose strategies to exploit the classification teacher to improve both the detector's recognition accuracy and localization performance. Our experiments on several detectors with different backbones demonstrate the effectiveness of our approach, allowing us to outperform the state-of-the-art detector-to-detector distillation methods.Knowledge distillation constitutes a simple yet effective way to improve the performance of a compact student network by exploiting the knowledge of a more powerful teacher. Nevertheless, the knowledge distillation literature remains limited to the scenario where the student and the teacher tackle the same task. Here, we investigate the problem of transferring knowledge not only across architectures but also across tasks. To this end, we study the case of object detection and, instead of followi…
Účet · 1,9k sledujících
Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.
Profesionální natáčení a streamování po celém světě.
Prezentace na podobné téma, kategorii nebo přednášejícího
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Jiayuan Mao, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Alex Damian, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Ta-Chu Kao, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Bill Basener, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Guy Blanc, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %