Další
Živý přenos začne již brzy!
Živý přenos již skončil.
Prezentace ještě nebyla nahrána!
  • title: Realistic Evaluation of Transductive Few-Shot Learning
      0:00 / 0:00
      • Nahlásit chybu
      • Nastavení
      • Playlisty
      • Záložky
      • Titulky Off
      • Rychlost přehrávání
      • Kvalita
      • Nastavení
      • Debug informace
      • Server sl-yoda-v3-stream-016-alpha.b-cdn.net
      • Velikost titulků Střední
      • Záložky
      • Server
      • sl-yoda-v3-stream-016-alpha.b-cdn.net
      • sl-yoda-v3-stream-016-beta.b-cdn.net
      • 1504562137.rsc.cdn77.org
      • 1896834465.rsc.cdn77.org
      • Titulky
      • Off
      • English
      • Rychlost přehrávání
      • Kvalita
      • Velikost titulků
      • Velké
      • Střední
      • Malé
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      Moje playlisty
        Záložky
          00:00:00
            Realistic Evaluation of Transductive Few-Shot Learning
            • Nastavení
            • Sync diff
            • Kvalita
            • Nastavení
            • Server
            • Kvalita
            • Server

            Realistic Evaluation of Transductive Few-Shot Learning

            6. prosince 2021

            Řečníci

            OV

            Olivier Veilleux

            Speaker · 0 followers

            MB

            Malik Boudiaf

            Speaker · 0 followers

            PP

            Pablo Piantanida

            Speaker · 0 followers

            O prezentaci

            Transductive inference is widely used in few-shot learning, as it leverages the statistics of the unlabeled query set of a few-shot task, typically yielding substantially better performances than its inductive counterpart. The current few-shot benchmarks use perfectly class-balanced tasks at inference. We argue that such an artificial regularity is unrealistic, as it assumes that the marginal label probability of the testing samples is known and fixed to the uniform distribution. In fact, in rea…

            Organizátor

            N2
            N2

            NeurIPS 2021

            Account · 1.9k followers

            O organizátorovi (NeurIPS 2021)

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Baví vás formát? Nechte SlidesLive zachytit svou akci!

            Profesionální natáčení a streamování po celém světě.

            Sdílení

            Doporučená videa

            Prezentace na podobné téma, kategorii nebo přednášejícího

            Introduction and Opening Remarks
            04:16

            Introduction and Opening Remarks

            Pan Lu

            N2
            N2
            NeurIPS 2021 3 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            On the Expected Complexity of Maxout Networks
            10:33

            On the Expected Complexity of Maxout Networks

            Hanna Tseran, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            Flood Segmentation on Sentinel-1 SAR Imagery with Semi-Supervised Learning
            06:22

            Flood Segmentation on Sentinel-1 SAR Imagery with Semi-Supervised Learning

            Siddha Ganju, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            Teachable Reinforcement Learning via Advice Distillation
            12:45

            Teachable Reinforcement Learning via Advice Distillation

            Olivia Watkins, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            Learning a Subspace of Policies for Online Adaptation in Reinforcement Learning
            05:04

            Learning a Subspace of Policies for Online Adaptation in Reinforcement Learning

            Jean-Baptiste Gaya, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            Hierarchical Clustering: $O(1)$-Approximation for Well-Clustered Graphs
            14:04

            Hierarchical Clustering: $O(1)$-Approximation for Well-Clustered Graphs

            Bogdan Manghiuc, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            Zajímají Vás podobná videa? Sledujte NeurIPS 2021