A Domain-Shrinking based Bayesian Optimization Algorithm with Order-Optimal Regret Performance

Dec 6, 2021

Speakers

About

We consider sequential optimization of an unknown function in a reproducing kernel Hilbert space. We propose a Gaussian process-based algorithm and establish its order-optimal regret performance (up to a poly-logarithmic factor). This is the first GP-based algorithm with an order-optimal regret guarantee. The proposed algorithm is rooted in the methodology of domain shrinking realized through a sequence of tree-based region pruning and refining to concentrate queries in increasingly smaller high-performing regions of the function domain. The search for high-performing regions is localized and guided by an iterative estimation of the optimal function value to ensure both learning efficiency and computational efficiency. Compared with the prevailing GP-UCB family of algorithms, the proposed algorithm reduces computational complexity by a factor of O(T^2d-1) (where T is the time horizon and d the dimension of the function domain).

Organizer

About NeurIPS 2021

Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

Like the format? Trust SlidesLive to capture your next event!

Professional recording and live streaming, delivered globally.

Sharing

Recommended Videos

Presentations on similar topic, category or speaker

Interested in talks like this? Follow NeurIPS 2021