Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Self-Interpretable Model with Transformation Equivariant Interpretation (SITE)
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-003-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-003-alpha.b-cdn.net
      • sl-yoda-v2-stream-003-beta.b-cdn.net
      • 1544410162.rsc.cdn77.org
      • 1005514182.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Self-Interpretable Model with Transformation Equivariant Interpretation (SITE)
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Self-Interpretable Model with Transformation Equivariant Interpretation (SITE)

            Dec 6, 2021

            Speakers

            YW

            Yipei Wang

            Řečník · 0 sledujících

            XW

            Xiaoqian Wang

            Řečník · 0 sledujících

            About

            With the proliferation of machine learning applications in the real world, the demand for explaining machine learning predictions continues to grow especially in high-stakes fields. Recent studies have found that interpretation methods can be sensitive and unreliable, where the interpretations can be disturbed by perturbations or transformations of input data. To address this issue, we propose to learn robust interpretation through transformation equivariant regularization in a self-interpretabl…

            Organizer

            N2
            N2

            NeurIPS 2021

            Účet · 1,9k sledujících

            About NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Like the format? Trust SlidesLive to capture your next event!

            Professional recording and live streaming, delivered globally.

            Sharing

            Recommended Videos

            Presentations on similar topic, category or speaker

            Learning Compact Representations of Neural Networks using DiscriminAtive Masking (DAM)
            13:59

            Learning Compact Representations of Neural Networks using DiscriminAtive Masking (DAM)

            Jie Bu, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            A Note on Sparse Generalized Eigenvalue Problem
            14:13

            A Note on Sparse Generalized Eigenvalue Problem

            Yunfeng Cai, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Remember What You Want to Forget: Algorithms for Machine Unlearning
            10:50

            Remember What You Want to Forget: Algorithms for Machine Unlearning

            Ayush Sekhari, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            The Beat of the Drum
            12:51

            The Beat of the Drum

            Vukosi Marivate

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            How Copyright Shapes Your Datasets (and What To Do About It)
            53:02

            How Copyright Shapes Your Datasets (and What To Do About It)

            Amanda Levendowski

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Credit Assignment Through Broadcasting a Global Error Vector
            10:32

            Credit Assignment Through Broadcasting a Global Error Vector

            David Clark, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interested in talks like this? Follow NeurIPS 2021