6. prosince 2021
Řečník · 0 sledujících
Řečník · 0 sledujících
Řečník · 0 sledujících
Řečník · 0 sledujících
Various approaches have been developed to upper bound the generalization error of a supervised learning algorithm. However, existing bounds are often loose and lack of guarantees. As a result, they may fail to characterize the exact generalization ability of a learning algorithm.Our main contribution is an exact characterization of the expected generalization error of the well-known Gibbs algorithm using symmetrized KL information between the input training samples and the output hypothesis. Our result can be applied to tighten existing expected generalization error and PAC-Bayesian bounds. Our approach is versatile, as it also characterizes the generalization errors of the Gibbs algorithm in the asymptotic regime, where it converges to the empirical risk minimization algorithm and the Gibbs algorithm with data-dependent regularizers. Of particular relevance, our results highlight the role the symmetrized KL information plays in controlling the generalization error of the Gibbs algorithm.Various approaches have been developed to upper bound the generalization error of a supervised learning algorithm. However, existing bounds are often loose and lack of guarantees. As a result, they may fail to characterize the exact generalization ability of a learning algorithm.Our main contribution is an exact characterization of the expected generalization error of the well-known Gibbs algorithm using symmetrized KL information between the input training samples and the output hypothesis. Our…
Účet · 1,9k sledujících
Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.
Profesionální natáčení a streamování po celém světě.
Prezentace na podobné téma, kategorii nebo přednášejícího
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
James Fulton, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Timnit Gebru, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %