Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Collapsed Variational Bounds for Bayesian Neural Networks
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-005-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-005-alpha.b-cdn.net
      • sl-yoda-v2-stream-005-beta.b-cdn.net
      • 1034628162.rsc.cdn77.org
      • 1409346856.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Collapsed Variational Bounds for Bayesian Neural Networks
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Collapsed Variational Bounds for Bayesian Neural Networks

            Dec 6, 2021

            Speakers

            MBT

            Marcin B. Tomczak

            Řečník · 0 sledujících

            SS

            Siddharth Swaroop

            Řečník · 0 sledujících

            AYKF

            Andrew Y. K. Foong

            Řečník · 0 sledujících

            About

            Recent interest in learning variational Bayesian Neural Networks (BNNs) focused on constructing new variational posteriors and improving the optimization of variational parameters. Variational methods also allow hyperparameters of BNNs to be learned by optimization of the Evidence Lower Bound (ELBO). This approach has received less attention, even though the performance of variational BNNs is known to be very sensitive to the model hyperparameter setting used. Current practice often fixes the hy…

            Organizer

            N2
            N2

            NeurIPS 2021

            Účet · 1,9k sledujících

            About NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Like the format? Trust SlidesLive to capture your next event!

            Professional recording and live streaming, delivered globally.

            Sharing

            Recommended Videos

            Presentations on similar topic, category or speaker

            Machine learning structure preserving brackets for forecasting irreversible processes
            15:01

            Machine learning structure preserving brackets for forecasting irreversible processes

            Kookjin Lee, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Democracy and the Pursuit of Randomness
            46:27

            Democracy and the Pursuit of Randomness

            Ariel D. Procaccia, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            A Unified Game-Theoretic Interpretation of Adversarial Robustness
            10:52

            A Unified Game-Theoretic Interpretation of Adversarial Robustness

            Jie Ren, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Exploring Social Posterior Collapse in Variational Autoencoder for Interaction Modeling
            09:55

            Exploring Social Posterior Collapse in Variational Autoencoder for Interaction Modeling

            Chen Tang, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Escaping the abstraction: a foreign function interface for the Unified Form Language [UFL]
            10:46

            Escaping the abstraction: a foreign function interface for the Unified Form Language [UFL]

            Nacime Bouziani, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            The Consequences of Massive Scaling in Machine Learning
            1:36:45

            The Consequences of Massive Scaling in Machine Learning

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interested in talks like this? Follow NeurIPS 2021