Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: SQALER: Scaling Question Answering by Decoupling Multi-Hop and Logical Reasoning
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-014-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-014-alpha.b-cdn.net
      • sl-yoda-v3-stream-014-beta.b-cdn.net
      • 1978117156.rsc.cdn77.org
      • 1243944885.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            SQALER: Scaling Question Answering by Decoupling Multi-Hop and Logical Reasoning
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            SQALER: Scaling Question Answering by Decoupling Multi-Hop and Logical Reasoning

            Dec 6, 2021

            Speakers

            MA

            Mattia Atzeni

            Řečník · 0 sledujících

            JB

            Jasmina Bogojeska

            Řečník · 0 sledujících

            AL

            Andreas Loukas

            Řečník · 0 sledujících

            About

            State-of-the-art approaches to reasoning and question answering over knowledge graphs (KGs) usually scale with the number of edges and can only be applied effectively on small instance-dependent subgraphs. In this paper, we address this issue by showing that multi-hop and more complex logical reasoning can be accomplished separately without loosing expressive power. Motivated by this insight, we propose an approach to multi-hop reasoning that scales linearly with the number of relation types in…

            Organizer

            N2
            N2

            NeurIPS 2021

            Účet · 1,9k sledujících

            About NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Like the format? Trust SlidesLive to capture your next event!

            Professional recording and live streaming, delivered globally.

            Sharing

            Recommended Videos

            Presentations on similar topic, category or speaker

            BLAST: Latent Dynamics Models from Bootstrapping
            04:58

            BLAST: Latent Dynamics Models from Bootstrapping

            Keiran Paster, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Validation Free and Replication Robust Volume-based Data Valuation
            14:46

            Validation Free and Replication Robust Volume-based Data Valuation

            Xinyi Xu, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Sub-Linear Memory: How to Make Performers SLiM
            13:40

            Sub-Linear Memory: How to Make Performers SLiM

            Valerii Likhosherstov, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation
            12:04

            Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

            Bowen Zhang, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 1 diváků, což je 0.1 %

            MagNet: A Neural Network for Directed Graphs
            15:04

            MagNet: A Neural Network for Directed Graphs

            Xitong Zhang, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Learning Debiased Representation via Disentangled Feature Augmentation
            20:06

            Learning Debiased Representation via Disentangled Feature Augmentation

            Jungsoo Lee, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interested in talks like this? Follow NeurIPS 2021